Vacuum Polarization and Casimir Effect within (3+1)D Maxwell-Chern-Simons Electrodynamics with Lorentz violation

A. F. Bubnov, O. G. Kharlanov, and V. Ch. Zhukovsky

Moscow State University, Department of Theoretical Physics

> Sakharov Conference
> Moscow, May 23, 2009.

Outline

(1) Introduction
(2) Casimir effect within extended QED (O.G.Kharlanov and V.Ch.Zhukovsky)

- Vacuum energy via the zeta function regularization
- Vacuum energy via the residue theorem
- Conclusion
(3) Effective action in QED under the Lorentz violation (A.F.Bubnov and V.Ch.Zhukovsky)
- The Model
- Induced Chern-Simons term in the constant field
- Quadratic contribution
- Results and conclusion

(1) Introduction

(2) Casimir effect within extended QED (O.G.Kharlanov and V.Ch.Zhukovsky)

- Vacuum energy via the zeta function regularization
- Vacuum energy via the residue theorem
- Conclusion
(3) Effective action in QED under the Lorentz violation (A.F.Bubnov and V.Ch.Zhukovsky)
- The Model
- Induced Chern-Simons term in the constant field
- Quadratic contribution
- Results and conclusion
V. Ch. Zhukovsky (MSU)

Standard Model Extension (SME [Kostelecký])

- Elaborated for studying the manifestation of the 'New Physics' (Strings, Extra Dimensions, Quantum Gravity,...) at low energies $E \ll m_{\mathrm{Pl}} \sim 10^{19}$ ГэВ
fields!), that maintain some 'natural' features of SM:
- observer Lorentz invariance (although the vacuum is not

Lorentz-invariant)

- unitarity
- microcausality
- $S U(3) c \times S U(2)$ ı $\times U(1)$ y gauge invariance
- power-counting renormalizablilty (for the minimal SME)
- Nhen $\sqsubset \ll m w \sim$, the SMTM results in the extended QED with $U(1)_{\text {em }}$ gauge invariance typical for SM

Standard Model Extension (SME [Kostelecký])

- Elaborated for studying the manifestation of the 'New Physics' (Strings, Extra Dimensions, Quantum Gravity,...) at low energies $E \ll m_{\mathrm{Pl}} \sim 10^{19}$ ГэВ
- Introduces a set of correction terms to the Lagrangian of SM (no new fields!), that maintain some 'natural' features of SM:
- observer Lorentz invariance (although the vacuum is not Lorentz-invariant)
- unitarity
- microcausality
- $S U(3)_{C} \times S U(2)_{I} \times U(1)_{Y}$ gauge invariance
- power-counting renormalizablilty (for the minimal SME)
- When $E \ll m_{W} \sim$, the SME results in the extended QED with $U(1)_{\text {em }}$ gauge invariance typical for SM

Standard Model Extension (SME [Kostelecký])

- Elaborated for studying the manifestation of the 'New Physics' (Strings, Extra Dimensions, Quantum Gravity,...) at low energies $E \ll m_{\mathrm{Pl}} \sim 10^{19}$ ГэВ
- Introduces a set of correction terms to the Lagrangian of SM (no new fields!), that maintain some 'natural' features of SM:
- observer Lorentz invariance (although the vacuum is not Lorentz-invariant)
- unitarity
- microcausality
- $S U(3)_{C} \times S U(2)_{I} \times U(1)_{Y}$ gauge invariance
- power-counting renormalizablilty (for the minimal SME)
- When $E \ll m_{W} \sim$, the SME results in the extended QED with $U(1)_{e m}$ gauge invariance typical for SM
(2) Casimir effect within extended QED (O.G.Kharlanov and V.Ch.Zhukovsky)
- Vacuum energy via the zeta function regularization
- Vacuum energy via the residue theorem
- Conclusion
(3) Effective action in QED under the Lorentz violation (A.F.Bubnov and V.Ch.Zhukovsky)
- The Model
- Induced Chern-Simons term in the constant field
- Quadratic contribution
- Results and conclusion

局亚

$(3+1)$ D Maxwell-Chern-Simons electrodynamics

A particular case of extended QED with the Chern-Simons term:

$$
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\frac{1}{2} \eta^{\mu} \epsilon_{\mu \nu \alpha \beta} A^{\nu} F^{\alpha \beta}+\bar{\psi}\left(i \gamma^{\mu} D_{\mu}-m\right) \psi
$$

η^{μ} is a constant 4-vector, breaks CPT and Lorentz invariance.
η^{μ} may be a manifestation of axion condensation [Carroll, Field, Jackiw, 1992], or of the background torsion [Dobado, Maroto, 1996]

$(3+1)$ D Maxwell-Chern-Simons electrodynamics

A particular case of extended QED with the Chern-Simons term:

$$
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\frac{1}{2} \eta^{\mu} \epsilon_{\mu \nu \alpha \beta} A^{\nu} F^{\alpha \beta}+\bar{\psi}\left(i \gamma^{\mu} D_{\mu}-m\right) \psi
$$

η^{μ} is a constant 4-vector, breaks CPT and Lorentz invariance.
η^{μ} may be a manifestation of axion condensation [Carroll, Field, Jackiw, 1992], or of the background torsion [Dobado, Maroto, 1996]

The model we use

$(3+1)$ D Maxwell-Chern-Simons electrodyanamics, $\eta^{\mu}=\{\eta, \mathbf{0}\}$

- Photon sector: $\psi, \bar{\psi}=0$
- Two infinite parallel superconductor plates separated by $D=2$ a
- Gauge: $A^{0}=0, \operatorname{div} \mathbf{A}=0$
- Equations of motion: $\square \mathbf{A}=2 \eta \operatorname{rot} \mathbf{A}$
- $T^{00}=\frac{1}{2}\left(\mathbf{E}^{2}+\mathbf{H}^{2}\right)-\eta \mathbf{A} \cdot \mathbf{H}$

When $a<\pi / 4|\eta|$, the theory is stable [1]!
Vacuum energy and Casimir force (per unit area):
$E_{v a c}=\int \frac{d^{3} x}{L^{2}}\left\langle T^{00}(x)\right\rangle=\sum \frac{\omega_{n}(D)}{2 I^{2}}, \quad f_{\text {Casimir }}=\frac{1}{I^{2}} \frac{\partial E_{v a c}}{\partial D}$
n is a complete set of quantum numbers, $L \rightarrow \infty$ is linear plate size.
The force is gauge-invariant, athough the energy is not [1]

The model we use

$(3+1)$ D Maxwell-Chern-Simons electrodyanamics, $\eta^{\mu}=\{\eta, \mathbf{0}\}$

- Photon sector: $\psi, \bar{\psi}=0$
- Two infinite parallel superconductor plates separated by $D=2$ a
- Gauge: $A^{0}=0, \operatorname{div} \mathbf{A}=0$
- Equations of motion: $\square \mathbf{A}=2 \eta \operatorname{rot} \mathbf{A}$
- $T^{00}=\frac{1}{2}\left(\mathbf{E}^{2}+\mathbf{H}^{2}\right)-\eta \mathbf{A} \cdot \mathbf{H}$

Vacuum energy and Casimir force (per unit area)

n is a complete set of quantum numbers, $L \rightarrow \infty$ is linear plate size.
The force is gauge-invariant, athough the energy is not [1]

The model we use

$(3+1)$ D Maxwell-Chern-Simons electrodyanamics, $\eta^{\mu}=\{\eta, \mathbf{0}\}$

- Photon sector: $\psi, \bar{\psi}=0$
- Two infinite parallel superconductor plates separated by $D=2$ a
- Gauge: $A^{0}=0, \operatorname{div} \mathbf{A}=0$
- Equations of motion: $\square \mathbf{A}=2 \eta \operatorname{rot} \mathbf{A}$
- $T^{00}=\frac{1}{2}\left(\mathbf{E}^{2}+\mathbf{H}^{2}\right)-\eta \mathbf{A} \cdot \mathbf{H}$

When $a<\pi / 4|\eta|$, the theory is stable [1]!

n is a complete set of quantum numbers, $L \rightarrow \infty$ is linear plate size.

The force is gauge-invariant, athough the energy is not [1]

The model we use

(3+1)D Maxwell-Chern-Simons electrodyanamics, $\eta^{\mu}=\{\eta, \mathbf{0}\}$

- Photon sector: $\psi, \bar{\psi}=0$
- Two infinite parallel superconductor plates separated by $D=2$ a
- Gauge: $\quad A^{0}=0, \operatorname{div} \mathbf{A}=0$
- Equations of motion: $\square \mathbf{A}=2 \eta \operatorname{rot} \mathbf{A}$
- $T^{00}=\frac{1}{2}\left(\mathbf{E}^{2}+\mathbf{H}^{2}\right)-\eta \mathbf{A} \cdot \mathbf{H}$

When $a<\pi / 4|\eta|$, the theory is stable [1]!
Vacuum energy and Casimir force (per unit area):
$E_{\text {vac }}=\int \frac{d^{3} x}{L^{2}}\left\langle T^{00}(x)\right\rangle=\sum_{n} \frac{\omega_{n}(D)}{2 L^{2}}, \quad f_{\text {Casimir }}=\frac{1}{L^{2}} \frac{\partial E_{v a c}}{\partial D}$,
n is a complete set of quantum numbers, $L \rightarrow \infty$ is linear plate size.
The force is gauge-invariant, athough the energy is not [1]

The model we use

(3+1)D Maxwell-Chern-Simons electrodyanamics, $\eta^{\mu}=\{\eta, \mathbf{0}\}$

- Photon sector: $\psi, \bar{\psi}=0$
- Two infinite parallel superconductor plates separated by $D=2$ a
- Gauge: $A^{0}=0, \operatorname{div} \mathbf{A}=0$
- Equations of motion: $\square \mathbf{A}=2 \eta \operatorname{rot} \mathbf{A}$
- $T^{00}=\frac{1}{2}\left(\mathbf{E}^{2}+\mathbf{H}^{2}\right)-\eta \mathbf{A} \cdot \mathbf{H}$

When $a<\pi / 4|\eta|$, the theory is stable [1]!
Vacuum energy and Casimir force (per unit area):
$E_{\text {vac }}=\int \frac{d^{3} x}{L^{2}}\left\langle T^{00}(x)\right\rangle=\sum_{n} \frac{\omega_{n}(D)}{2 L^{2}}, \quad f_{\text {Casimir }}=\frac{1}{L^{2}} \frac{\partial E_{\text {vac }}}{\partial D}$,
n is a complete set of quantum numbers, $L \rightarrow \infty$ is linear plate size.
The force is gauge-invariant, athough the energy is not [1]

One-photon eigenstates [1]

$$
\begin{aligned}
& \mathbf{A}(\mathbf{x}, t)=N e^{\mp i \omega t+i \mathbf{k x}} \mathbf{f}(z), \quad \mathbf{k}=\left\{k_{x}, k_{y}, 0\right\} . \\
& \left(\nabla^{2}+2 \eta \operatorname{rot}+\omega^{2}\right) \mathbf{A}=0, \quad \operatorname{div} \mathbf{A}=0, \\
& A_{x}=A_{y}=0 \text { at } z= \pm a \text { (boundary conditions at the conductor) }
\end{aligned}
$$

One-photon eigenstates [2]

Ansatz:

$\mathbf{A}_{\epsilon, \mathbf{k}, \Pi, n_{z}}(\mathbf{x}, t)=N e^{-i \epsilon \omega t+i \mathbf{k x}}\left(f_{z} \mathbf{e}_{z}+f_{k} \hat{\mathbf{k}}+f_{z k}\left[\mathbf{e}_{z} \hat{\mathbf{k}}\right]\right), \quad \mathbf{k}=\left\{k_{x}, k_{y}, 0\right\}$.
Transversality implies: $\quad f_{k}=\frac{i}{k} \partial_{z} f_{z}$,
Parity $\Pi= \pm 1: \quad f_{k}(-z)=-\Pi f_{k}(z), f_{z k, z}(-z)=\Pi f_{z k, z}(z)$.
Equations for $f_{k z, z}$:

The existence of nontrivial solutions implies that:

One-photon eigenstates [2]

Ansatz:

$\mathbf{A}_{\epsilon, \mathbf{k}, \Pi, n_{z}}(\mathbf{x}, t)=N e^{-i \epsilon \omega t+i \mathbf{k x}}\left(f_{z} \mathbf{e}_{z}+f_{k} \hat{\mathbf{k}}+f_{z k}\left[\mathbf{e}_{z} \hat{\mathbf{k}}\right]\right), \quad \mathbf{k}=\left\{k_{x}, k_{y}, 0\right\}$.
Transversality implies: $\quad f_{k}=\frac{i}{k} \partial_{z} f_{z}$,
Parity $\Pi= \pm 1: \quad f_{k}(-z)=-\Pi f_{k}(z), f_{z k, z}(-z)=\Pi f_{z k, z}(z)$.
Equations for $f_{k z, z}$:

$$
\begin{aligned}
\left(\omega^{2}-k^{2}+\partial_{z}^{2}\right) k f_{y}= & 2 i \eta\left(k^{2}-\partial_{z}^{2}\right) f_{z} \\
\left(\omega^{2}-k^{2}+\partial_{z}^{2}\right) f_{z}= & -2 i \eta k f_{y} \\
f_{y}(a)=0, & \partial_{z} f_{z}(a)=0
\end{aligned}
$$

The existence of nontrivial solutions implies that:

One-photon eigenstates [2]

Ansatz:

$$
\mathbf{A}_{\epsilon, \mathbf{k}, \Pi, n_{z}}(\mathbf{x}, t)=N e^{-i \epsilon \omega t+i \mathbf{k x}}\left(f_{z} \mathbf{e}_{z}+f_{k} \hat{\mathbf{k}}+f_{z k}\left[\mathbf{e}_{z} \hat{\mathbf{k}}\right]\right), \quad \mathbf{k}=\left\{k_{x}, k_{y}, 0\right\} .
$$

Transversality implies: $\quad f_{k}=\frac{i}{k} \partial_{z} f_{z}$,
Parity $\Pi= \pm 1: \quad f_{k}(-z)=-\Pi f_{k}(z), f_{z k, z}(-z)=\Pi f_{z k, z}(z)$.
Equations for $f_{k z, z}$:

$$
\begin{aligned}
\left(\omega^{2}-k^{2}+\partial_{z}^{2}\right) k f_{y}= & 2 i \eta\left(k^{2}-\partial_{z}^{2}\right) f_{z} \\
\left(\omega^{2}-k^{2}+\partial_{z}^{2}\right) f_{z}= & -2 i \eta k f_{y} \\
f_{y}(a)=0, & \partial_{z} f_{z}(a)=0
\end{aligned}
$$

The existence of nontrivial solutions implies that:

$$
\begin{gathered}
g_{\Pi}\left(\omega^{2}\right) \equiv \varphi_{\Pi}\left(\varkappa_{+} a\right) \varphi_{-\Pi}\left(\varkappa_{-} a\right) \sin \theta_{-}+\varphi_{\Pi}\left(\varkappa_{-} a\right) \varphi_{-\Pi}\left(\varkappa_{+} a\right) \sin \theta_{+}=0, \\
\varkappa_{ \pm}=\sqrt{K_{ \pm}-k^{2}}, \quad K_{ \pm}=\mp \eta+\sqrt{\omega^{2}+\eta^{2}}, \quad \sin \theta_{ \pm}=\varkappa_{ \pm} / K_{ \pm} ; \varphi_{ \pm 1}(x) \equiv\left\{\begin{array}{l}
\cos x \\
\sin x^{\equiv}
\end{array}\right.
\end{gathered}
$$

(1) Introduction
(2) Casimir effect within extended QED (O.G.Kharlanov and V.Ch.Zhukovsky)

- Vacuum energy via the zeta function regularization
- Vacuum energy via the residue theorem
- Conclusion
(3) Effective action in QED under the Lorentz violation (A.F.Bubnov and V.Ch.Zhukovsky)
- The Model
- Induced Chern-Simons term in the constant field
- Quadratic contribution
- Results and conclusion

Vacuum energy

Renormalized vacuum energy (Casimir energy) per $1 \mathrm{~cm}^{2}$:

$$
\begin{gathered}
E_{v a c}=\sum_{n} \frac{\omega_{n}}{2 L^{2}}=\frac{1}{2} \zeta(-1 / 2), \quad f_{\text {Casimir }}=\frac{\partial E_{v a c}}{\partial D}, \\
\zeta(s)=\frac{1}{L^{2}} \sum_{n}\left(\omega_{n}^{2}\right)^{-s}=\int_{0}^{\infty} \frac{k d k}{2 \pi} \sum_{\Pi= \pm 1} \sum_{n_{z}}\left(\omega_{k, \Pi, n_{z}}^{2}\right)^{-s} .
\end{gathered}
$$

For sufficiently large $\operatorname{Re} s$, the series for $\zeta(s)$ is convergent; for other $s \in \mathbb{C}$, it is analytically continued.

Vacuum energy

Renormalized vacuum energy (Casimir energy) per $1 \mathrm{~cm}^{2}$:

$$
\begin{gathered}
E_{v a c}=\sum_{n} \frac{\omega_{n}}{2 L^{2}}=\frac{1}{2} \zeta(-1 / 2), \quad f_{\text {Casimir }}=\frac{\partial E_{v a c}}{\partial D}, \\
\zeta(s)=\frac{1}{L^{2}} \sum_{n}\left(\omega_{n}^{2}\right)^{-s}=\int_{0}^{\infty} \frac{k d k}{2 \pi} \sum_{\Pi= \pm 1} \sum_{n_{z}}\left(\omega_{k, \Pi, n_{z}}^{2}\right)^{-s} .
\end{gathered}
$$

For sufficiently large $\operatorname{Re} s$, the series for $\zeta(s)$ is convergent; for other $s \in \mathbb{C}$, it is analytically continued.
When $\eta=0$:

$$
\begin{gathered}
\left.\zeta(s)\right|_{\eta=0}=\int_{0}^{\infty} \frac{k d k}{2 \pi} \sum_{\Pi= \pm 1} \sum_{n_{z}=1}^{\infty}\left(k^{2}+\left(\frac{\pi n_{z}}{2 a}\right)^{2}\right)^{-s}=\left(\frac{D}{\pi}\right)^{2 s-2} \frac{\zeta_{R}(2 s-2)}{2 \pi(s-1)}, \\
\left.f_{\text {Casimir }}\right|_{\eta=0}=\frac{\pi^{2}}{240 D^{4}} \quad \text { (attraction) },
\end{gathered}
$$

$\zeta_{R}(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}$ is the Riemann zeta function.

The η-correction to the zeta function [1]

$$
\begin{gathered}
\zeta(s)=\int_{0}^{\infty} \frac{k d k}{2 \pi} \sum_{\Pi= \pm 1} \sum_{n_{z}}\left(\omega_{n}^{2}\right)^{-s}, \quad n=\left\{k, \Pi, n_{z}\right\} \\
\left.\omega_{n}\right|_{\eta=0} \equiv \omega_{0 n}=\sqrt{k^{2}+\left(\frac{\pi n_{z}}{2 a}\right)^{2}}
\end{gathered}
$$

Note that ω_{n} are the roots of the equation $g_{\square}\left(\omega^{2}\right)=0$, which is even with respect to changing the sign of η, then $\omega_{n}=\omega_{n}\left(\eta^{2}\right)$.

The η-correction to the zeta function [1]

$$
\begin{gathered}
\zeta(s)=\int_{0}^{\infty} \frac{k d k}{2 \pi} \sum_{\Pi= \pm 1} \sum_{n_{z}}\left(\omega_{n}^{2}\right)^{-s}, \quad n=\left\{k, \Pi, n_{z}\right\} \\
\left.\omega_{n}\right|_{\eta=0} \equiv \omega_{0 n}=\sqrt{k^{2}+\left(\frac{\pi n_{z}}{2 a}\right)^{2}}
\end{gathered}
$$

Note that ω_{n} are the roots of the equation $g_{\square}\left(\omega^{2}\right)=0$, which is even with respect to changing the sign of η, then $\omega_{n}=\omega_{n}\left(\eta^{2}\right)$.

$$
\begin{aligned}
\left.\sum_{\Pi= \pm 1} \frac{\partial \omega_{n}}{\partial\left(\eta^{2}\right)}\right|_{\eta=0} & =-\left.\sum_{\Pi= \pm 1} \frac{\partial^{2} g_{\Pi} / \partial \eta^{2}}{2 \partial g_{\Pi} / \partial \omega}\right|_{\eta=0, \omega=\omega_{0 n}}=-\frac{1}{\omega_{0 n}}+\frac{4 a^{2} k^{2}}{n_{z}^{2} \pi^{2} \omega_{0 n}}, \\
\left.\frac{\partial \zeta(s)}{\partial\left(\eta^{2}\right)}\right|_{\eta=0} & =\left.\int_{0}^{\infty} \frac{k d k}{2 \pi} \sum_{n_{z}} \frac{-2 s}{\left(\omega_{0 n}^{2}\right)^{s+1 / 2}} \sum_{\Pi= \pm 1} \frac{\partial \omega_{n}}{\partial\left(\eta^{2}\right)}\right|_{\eta=0} .
\end{aligned}
$$

The η-correction to the zeta function [2]

$$
\begin{aligned}
&\left.\frac{\partial \zeta(s)}{\partial\left(\eta^{2}\right)}\right|_{\eta=0}=\int_{0}^{\infty} \frac{k d k}{2 \pi} \sum_{n_{z}=1}^{\infty} \frac{2 s}{\left(k^{2}+\left(\frac{\pi n_{z}}{2 a}\right)^{2}\right)^{s+1}}\left[1-\frac{4 a^{2} k^{2}}{\pi^{2} n_{z}^{2}}\right]= \\
&=\frac{s-2}{2 \pi(s-1)}\left(\frac{2 a}{\pi}\right)^{2 s} \zeta_{R}(2 s) \\
& \zeta(s)=\frac{1}{2 \pi(s-1)}\left(\frac{D}{\pi}\right)^{2 s-2}\left(\zeta_{R}(2 s-2)+(s-2)\left(\frac{\eta D}{\pi}\right)^{2} \zeta_{R}(2 s)+\mathcal{O}\left(\eta^{4}\right)\right)
\end{aligned}
$$

The correction to the Casimir force

$$
f_{\text {Casimir }}=\frac{\partial}{\partial D} \frac{\zeta(-1 / 2)}{2}=\frac{\pi^{2}}{240 D^{4}}\left(1+\frac{25}{3 \pi^{2}}(\eta D)^{2}+\mathcal{O}\left((\eta D)^{4}\right)\right),|\eta| D \ll 1 .
$$

Discussion:

- The correction is attractive, contrary to the recent result obtained by [Frank,Turan, 2006]
- The difference from the Maxwell value is considerable for comparatively large D
1% accuracy] gives the constraint:
V. Ch. Zhukovsky (MSU)

The correction to the Casimir force

$$
f_{\text {Casimir }}=\frac{\partial}{\partial D} \frac{\zeta(-1 / 2)}{2}=\frac{\pi^{2}}{240 D^{4}}\left(1+\frac{25}{3 \pi^{2}}(\eta D)^{2}+\mathcal{O}\left((\eta D)^{4}\right)\right),|\eta| D \ll 1 .
$$

Discussion:

- The correction is attractive, contrary to the recent result obtained by [Frank,Turan, 2006]
- The difference from the Maxwell value is considerable for comparatively large D
- Experimental data [Mohideen et al., $D \sim 500 \mathrm{~nm}, L \sim 1 \mathrm{~cm}$, 1\%accuracy] gives the constraint:

$$
|\eta| \lesssim 5 \cdot 10^{-3} \mathrm{eV} .
$$

Some authors claim that sensing the Casimir force is possible at $D \lesssim 1 \mathrm{~mm}$, then one could place a harder constraint $|\eta| \lesssim 10^{-5} \mathrm{e} \underline{\underline{\underline{V}}}$.
(1) Introduction
(2) Casimir effect within extended QED (O.G.Kharlanov and V.Ch.Zhukovsky)

- Vacuum energy via the zeta function regularization
- Vacuum energy via the residue theorem
- Conclusion
(3) Effective action in QED under the Lorentz violation (A.F.Bubnov and V.Ch.Zhukovsky)
- The Model
- Induced Chern-Simons term in the constant field
- Quadratic contribution
- Results and conclusion

Sum \rightarrow complex plane integral [1]

$$
f_{\text {Casimir }}=\frac{1}{L^{2}} \frac{\partial}{\partial D} \sum_{\omega_{n} \in \mathbb{R}^{+}} \frac{\omega_{n}(D)}{2}=\frac{1}{2} \frac{\partial}{\partial D} \int_{0}^{\infty} \frac{k d k}{2 \pi} D\left(S_{+}+S_{-}\right),
$$

Smooth cutoff regularization:

$$
S_{\Pi}=\frac{1}{D} \sum_{\omega_{k, n}, n_{z} \in \mathbb{R}^{+}} \omega_{k, \Pi, n_{z}} e^{-\omega_{k, \Pi}, n_{z} / \sqrt{k \Lambda}}, \quad \Lambda \rightarrow+\infty .
$$

Instead of $g_{\square}\left(\omega^{2}\right)$ whose zeros are the one-photon energy eigenvalues, we will use the meromorphic (analytical, except for the numerable set of poles; in particular, with no branch points) function

Sum \rightarrow complex plane integral [1]

$$
f_{\text {Casimir }}=\frac{1}{L^{2}} \frac{\partial}{\partial D} \sum_{\omega_{n} \in \mathbb{R}^{+}} \frac{\omega_{n}(D)}{2}=\frac{1}{2} \frac{\partial}{\partial D} \int_{0}^{\infty} \frac{k d k}{2 \pi} D\left(S_{+}+S_{-}\right),
$$

Smooth cutoff regularization:

$$
S_{\Pi}=\frac{1}{D} \sum_{\omega_{k, n}, n_{2} \in \mathbb{R}^{+}} \omega_{k, \Pi, n_{z}} e^{-\omega_{k, \Pi, n} / \sqrt{k \Lambda}}, \quad \Lambda \rightarrow+\infty .
$$

Instead of $g_{\square}\left(\omega^{2}\right)$ whose zeros are the one-photon energy eigenvalues, we will use the meromorphic (analytical, except for the numerable set of poles; in particular, with no branch points) function

$$
\begin{gathered}
\tilde{g}_{\Pi}\left(K_{+}\right) \equiv \frac{g_{\Pi}(\omega)}{\varphi_{\Pi}\left(\varkappa_{+} a\right) \varphi_{\Pi}\left(\varkappa_{-} a\right)}=\tan ^{\Pi} \varkappa_{+} a \sin \theta_{+}+\tan ^{\Pi} \varkappa_{-} a \sin \theta_{-}, \\
\omega^{2}=K_{+} K_{-}, \quad K_{-}=K_{+}+2 \eta .
\end{gathered}
$$

Sum \rightarrow complex plane integral [2]

Residue theorem (we assume $\eta \geq 0$, since the spectrum depends on $|\eta|$):

$$
\oint_{C} \frac{d K_{+}}{2 \pi i} \omega \frac{\partial \tilde{g}_{\Pi} / \partial K_{+}}{\tilde{g}_{\Pi}}=S_{\Pi} D+\sum_{\bar{\omega}_{n}} \bar{\omega}_{n} \frac{\operatorname{Res}\left[\partial \tilde{g}_{\Pi} / \partial K_{+}, K_{+}=\bar{\omega}_{n}\right]}{\tilde{g}_{\Pi}\left(\bar{\omega}_{n}\right)},
$$

Sum \rightarrow complex plane integral [3]

Transforming the pole residue term back into an integral, we obtain:

$$
\begin{gathered}
\tilde{g}_{\Pi}\left(K_{+}\right) \equiv \tan ^{\Pi} \varkappa_{+} a \sin \theta_{+}+\tan ^{\Pi} \varkappa_{-} a \sin \theta_{-}, \\
S_{\Pi}=\frac{\Pi}{2} \oint_{C} \frac{\omega d K_{+}}{2 \pi i \tilde{g}_{\Pi}\left(K_{+}\right)}\left\{2-\tan ^{\Pi} \varkappa_{+} a \tan ^{\Pi} \varkappa_{-} a\left(\frac{\sin \theta_{-}}{\sin \theta_{+}}+\right.\right. \\
\\
\left.\left.+\frac{\sin \theta_{+}}{\sin \theta_{-}}\right)+\frac{\Pi \tan ^{\Pi} \varkappa_{+} a}{\varkappa_{+} a}+\frac{\Pi \tan ^{\Pi} \varkappa_{-a}}{\varkappa_{-} a}\right\}
\end{gathered}
$$

The integral over the semicircle C_{Λ} does not depend on a, when Λ within any finite order in a, thus it is cancelled when renormalized. Renormalization: $S_{\Pi}^{\text {ren }}(D)=S_{\Pi}(D)-S_{\Pi}^{\text {div }}(\infty), \quad S_{\Pi}^{\text {div }}(D)=C_{1}+C_{2} / D$ at $D \rightarrow \infty$

Sum \rightarrow complex plane integral [3]

Transforming the pole residue term back into an integral, we obtain:

$$
\begin{gathered}
\tilde{g}_{\Pi}\left(K_{+}\right) \equiv \tan ^{\Pi} \varkappa_{+} a \sin \theta_{+}+\tan ^{\Pi} \varkappa_{-} a \sin \theta_{-}, \\
S_{\Pi}=\frac{\Pi}{2} \oint_{C} \frac{\omega d K_{+}}{2 \pi i \tilde{g}_{\Pi}\left(K_{+}\right)}\left\{2-\tan ^{\Pi} \varkappa_{+} a \tan \varkappa^{\Pi} \varkappa_{-}\left(\frac{\sin \theta_{-}}{\sin \theta_{+}}+\right.\right. \\
\\
\left.\left.+\frac{\sin \theta_{+}}{\sin \theta_{-}}\right)+\frac{\Pi \tan ^{\Pi} \varkappa_{+} a}{\varkappa_{+} a}+\frac{\Pi \tan ^{\Pi} \varkappa_{-a}}{\varkappa_{-} a}\right\}
\end{gathered}
$$

The integral over the semicircle C_{Λ} does not depend on a, when $\Lambda \rightarrow \infty$, within any finite order in a, thus it is cancelled when renormalized.

Sum \rightarrow complex plane integral [3]

Transforming the pole residue term back into an integral, we obtain:

$$
\begin{gathered}
\tilde{g}_{\Pi}\left(K_{+}\right) \equiv \tan ^{\Pi} \varkappa_{+} a \sin \theta_{+}+\tan ^{\Pi} \varkappa_{-} a \sin \theta_{-}, \\
S_{\Pi}=\frac{\Pi}{2} \oint_{C} \frac{\omega d K_{+}}{2 \pi i \tilde{g}_{\Pi}\left(K_{+}\right)}\left\{2-\tan ^{\Pi} \varkappa_{+} a \tan \varkappa^{\Pi} \varkappa_{-}\left(\frac{\sin \theta_{-}}{\sin \theta_{+}}+\right.\right. \\
\left.\left.+\frac{\sin \theta_{+}}{\sin \theta_{-}}\right)+\frac{\Pi \tan ^{\Pi} \varkappa_{+} a}{\varkappa_{+} a}+\frac{\Pi \tan ^{\Pi} \varkappa_{-a}}{\varkappa_{-} a}\right\}
\end{gathered}
$$

The integral over the semicircle C_{Λ} does not depend on a, when $\Lambda \rightarrow \infty$, within any finite order in a, thus it is cancelled when renormalized.
Renormalization:
$S_{\Pi}^{\text {ren }}(D)=S_{\Pi}(D)-S_{\Pi}^{\text {div }}(\infty), \quad S_{\Pi}^{\text {div }}(D)=C_{1}+C_{2} / D$ at $D \rightarrow \infty$.

After renormalization and $\Lambda \rightarrow \infty$

Let us redefine $K_{+} \rightarrow-i K_{+}$, and make all momentum quantities dimensionless multiplying them by a, then we obtain:

$$
\begin{gathered}
f_{\text {Casimir }}=\frac{1}{2} \frac{\partial}{\partial D}\left(D \frac{\left(\tilde{S}_{+}+\tilde{S}_{-}\right)}{a^{4}}\right), \\
\tilde{S}_{\Pi}=-\frac{1}{2} \int_{0}^{\infty} \frac{k d k}{2 \pi} \int_{\infty}^{+\infty} \frac{d K_{+}}{2 \pi} \frac{\operatorname{sgn} K_{+} \sqrt{K_{+} K_{-}}}{\tanh ^{\Pi} \varkappa_{+} \cosh \theta_{+}+\tanh ^{\Pi} \varkappa_{-} \cosh \theta_{-}} \Sigma_{\Pi}, \\
\Sigma_{\Pi}=1+\tanh ^{\Pi} x^{\tanh \Pi} \frac{\cosh \theta_{+}}{\cosh \theta_{-}}-\left(1+\frac{\cosh \theta_{-}}{\cosh \theta_{-}}\right) \tan \Pi
\end{gathered}
$$

After renormalization and $\Lambda \rightarrow \infty$

Let us redefine $K_{+} \rightarrow-i K_{+}$, and make all momentum quantities dimensionless multiplying them by a, then we obtain:

$$
\begin{gathered}
f_{\text {Casimir }}=\frac{1}{2} \frac{\partial}{\partial D}\left(D \frac{\left(\tilde{S}_{+}+\tilde{S}_{-}\right)}{a^{4}}\right), \\
\tilde{S}_{\Pi}=-\frac{1}{2} \int_{0}^{\infty} \frac{k d k}{2 \pi} \int_{\infty}^{+\infty} \frac{d K_{+}}{2 \pi} \frac{\operatorname{sgn} K_{+} \sqrt{K_{+} K_{-}}}{\tanh ^{\Pi} \varkappa_{+} \cosh \theta_{+}+\tanh ^{\Pi} \varkappa_{-} \cosh \theta_{-}} \Sigma_{\Pi}, \\
\Sigma_{\Pi}=1+\tanh ^{\Pi} \varkappa_{+} \tanh ^{\Pi} \varkappa_{-} \frac{\cosh \theta_{+}}{\cosh \theta_{-}}-\left(1+\frac{\cosh \theta_{+}}{\cosh \theta_{-}}\right) \tan ^{\Pi} \varkappa_{+}+ \\
+\frac{\tanh ^{\Pi} \varkappa_{+}-\tanh ^{\Pi} \varkappa_{-}}{\cosh \theta_{+}+\cosh \theta_{+} \sinh ^{2} \theta_{-}} \\
\varkappa_{-} \\
K_{-}=K_{+}-i \eta D, \quad \varkappa_{ \pm}=\sqrt{k^{2}+K_{ \pm}^{2}}, \quad \sinh \theta_{ \pm}=k / K_{ \pm} .
\end{gathered}
$$

The results of the calculation

After the expansion with respect to ηD and taking the integrals, we obtain:

$$
\tilde{S}_{+}+\tilde{S}_{-}=-\frac{\pi^{2}}{5760}-\frac{5(\eta D)^{2}}{1152}+\mathcal{O}\left((\eta D)^{4}\right)
$$

i.e., the expression we obtained earlier, which is valid when $|\eta| D \ll 1$.
V. Ch. Zhukovsky (MSU)

The results of the calculation

After the expansion with respect to ηD and taking the integrals, we obtain:

$$
\tilde{S}_{+}+\tilde{S}_{-}=-\frac{\pi^{2}}{5760}-\frac{5(\eta D)^{2}}{1152}+\mathcal{O}\left((\eta D)^{4}\right)
$$

$f_{\text {Casimir }}=\frac{1}{2} \frac{\partial}{\partial D}\left(D \frac{\tilde{S}_{+}+\tilde{S}_{-}}{a^{4}}\right)=\frac{\pi^{2}}{240 D^{4}}\left(1+\frac{25}{3 \pi^{2}}(\eta D)^{2}+\mathcal{O}\left((\eta D)^{4}\right)\right)$,
i.e., the expression we obtained earlier, which is valid when $|\eta| D \ll 1$.
(1) Introduction
(2) Casimir effect within extended QED (O.G.Kharlanov and V.Ch.Zhukovsky)

- Vacuum energy via the zeta function regularization
- Vacuum energy via the residue theorem
- Conclusion
(3) Effective action in QED under the Lorentz violation (A.F.Bubnov and V.Ch.Zhukovsky)
- The Model
- Induced Chern-Simons term in the constant field
- Quadratic contribution
- Results and conclusion

Main results

- The eigenstates and energy eigenvalues for the Maxwell-Chern-Simons photon between the conducting plates
- The vacuum is stable when $D|\eta|<\pi / 2$ [1]
- The leading correction to the Casimir force, which is quadratic in η
- Constraint on η

References:
[1] V.Ch.Zhukovsky and O.G.Kharlanov, Casimir effect within (3+1)D Maxwell-Chern-Simons electrodynamics, arXiv/0905.3689[hep-th] .
(2) Casimir effect within extended QED (O.G.Kharlanov and
V.Ch.Zhukovsky)

- Vacuum energy via the zeta function regularization
- Vacuum energy via the residue theorem
- Conclusion
(3) Effective action in QED under the Lorentz violation (A.F.Bubnov and V.Ch.Zhukovsky)
- The Model
- Induced Chern-Simons term in the constant field
- Quadratic contribution
- Results and conclusion
(1) Introduction
(2) Casimir effect within extended QED (O.G.Kharlanov and V.Ch.Zhukovsky)
- Vacuum energy via the zeta function regularization
- Vacuum energy via the residue theorem
- Conclusion
(3) Effective action in QED under the Lorentz violation (A.F.Bubnov and V.Ch.Zhukovsky)
- The Model
- Induced Chern-Simons term in the constant field
- Quadratic contribution
- Results and conclusion

The Model

Another special case of the Extended QED; fermion sector:

$$
\begin{gathered}
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\mathcal{L}_{\psi}, \\
\mathcal{L}_{\psi}[\bar{\psi}, \psi, A, b]=\bar{\psi}\left(i \hat{\partial}-\hat{A}+\hat{b} \gamma^{5}-m\right) \psi, \quad \hat{\xi} \equiv \gamma^{\mu} \xi_{\mu} .
\end{gathered}
$$

where b_{μ} is a constant 4-vector, that violates CPT and Lorentz invariance of the theory.

Experimental constraints on b^{μ} for the electron:

We will find the contribution of the Lorentz-violating term to the effective

\square

The Model

Another special case of the Extended QED; fermion sector:

$$
\begin{gathered}
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\mathcal{L}_{\psi} \\
\mathcal{L}_{\psi}[\bar{\psi}, \psi, A, b]=\bar{\psi}\left(i \hat{\partial}-\hat{A}+\hat{b} \gamma^{5}-m\right) \psi, \quad \hat{\xi} \equiv \gamma^{\mu} \xi_{\mu} .
\end{gathered}
$$

where b_{μ} is a constant 4-vector, that violates CPT and Lorentz invariance of the theory.

Experimental constraints on b^{μ} for the electron:

$$
\left|b_{0}\right| \lesssim 10^{-2} \mathrm{eV}, \quad|\mathbf{b}| \lesssim 10^{-19} \mathrm{eV} .
$$

We will find the contribution of the Lorentz-violating term to the effective

The Model

Another special case of the Extended QED; fermion sector:

$$
\begin{gathered}
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\mathcal{L}_{\psi}, \\
\mathcal{L}_{\psi}[\bar{\psi}, \psi, A, b]=\bar{\psi}\left(i \hat{\partial}-\hat{A}+\hat{b} \gamma^{5}-m\right) \psi, \quad \hat{\xi} \equiv \gamma^{\mu} \xi_{\mu} .
\end{gathered}
$$

where b_{μ} is a constant 4-vector, that violates CPT and Lorentz invariance of the theory.

Experimental constraints on b^{μ} for the electron:

$$
\left|b_{0}\right| \lesssim 10^{-2} \mathrm{eV}, \quad|\mathbf{b}| \lesssim 10^{-19} \mathrm{eV} .
$$

We will find the contribution of the Lorentz-violating term to the effective action $i \Gamma^{\mathrm{eff}}$ of QED.
(1) Introduction
(2) Casimir effect within extended QED (O.G.Kharlanov and V.Ch.Zhukovsky)

- Vacuum energy via the zeta function regularization
- Vacuum energy via the residue theorem
- Conclusion
(3) Effective action in QED under the Lorentz violation (A.F.Bubnov and V.Ch.Zhukovsky)
- The Model
- Induced Chern-Simons term in the constant field
- Quadratic contribution
- Results and conclusion

Induced Chern-Simons term in the constant field [1]

$F_{\mu \nu}=$ const
Effective action in the proper time representation:

$$
\begin{gathered}
i \Gamma^{\mathrm{eff}}[A, b]=-\frac{1}{2} \int_{0}^{\infty} \frac{d z}{z} \operatorname{Tr} e^{-z H}, \\
H=-\pi^{\mu} \pi_{\mu}-2 i \sigma^{\mu \nu} b_{\mu} \pi_{\nu} \gamma^{5}+\frac{1}{2} \sigma^{\mu \nu} F_{\mu \nu}+b_{\mu} b^{\mu}+m^{2},
\end{gathered}
$$

where $\pi^{\mu}=i \partial_{\mu}-A_{\mu}, \sigma^{\mu \nu}=\frac{i}{2}\left[\gamma^{\mu}, \gamma^{\nu}\right], \gamma^{5}=-i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}$.
In this expression, we apply the Baker-Hausdorf formula to the exponent to find its expansion into a series with respect to b_{μ} :

Induced Chern-Simons term in the constant field [1]

$F_{\mu \nu}=$ const
Effective action in the proper time representation:

$$
\begin{gathered}
i \Gamma^{\mathrm{eff}}[A, b]=-\frac{1}{2} \int_{0}^{\infty} \frac{d z}{z} \operatorname{Tr} e^{-z H} \\
H=-\pi^{\mu} \pi_{\mu}-2 i \sigma^{\mu \nu} b_{\mu} \pi_{\nu} \gamma^{5}+\frac{1}{2} \sigma^{\mu \nu} F_{\mu \nu}+b_{\mu} b^{\mu}+m^{2}
\end{gathered}
$$

where $\pi^{\mu}=i \partial_{\mu}-A_{\mu}, \sigma^{\mu \nu}=\frac{i}{2}\left[\gamma^{\mu}, \gamma^{\nu}\right], \gamma^{5}=-i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}$.
In this expression, we apply the Baker-Hausdorf formula to the exponent to find its expansion into a series with respect to b_{μ} :

$$
\begin{gathered}
\exp (\tau(A+B))=\exp (\tau A) \cdot \exp (\tau B) \cdot L^{-1}(\tau), \frac{d \ln L}{d \tau}=B-e^{-\tau B} f(\tau) e^{\tau B} \\
A \equiv z \pi^{\mu} \pi_{\mu}-\frac{1}{2} z \sigma^{\mu \nu} F_{\mu \nu}, B \equiv 2 i z \sigma^{\mu \nu} b_{\mu} \pi_{\nu} \gamma^{5}, f(\tau)=e^{-\tau A} B e^{\tau A}
\end{gathered}
$$

Induced Chern-Simons term in the constant field [2]

$F_{\mu \nu}=$ const
$\exp (\tau(A+B))=\exp (\tau A) \cdot \exp (\tau B) \cdot L^{-1}(\tau), \frac{d \ln L}{d \tau}=B-e^{-\tau B} f(\tau) e^{\tau B}$

$$
A \equiv z \pi^{\mu} \pi_{\mu}-\frac{1}{2} z \sigma^{\mu \nu} F_{\mu \nu}, B \equiv 2 i z \sigma^{\mu \nu} b_{\mu} \pi_{\nu} \gamma^{5}, f(\tau)=e^{-\tau A} B e^{\tau A} .
$$

Within the linear approximation, taking the trace tr, we obtain:
$i \Gamma^{\mathrm{eff}}(A, b)=-\frac{1}{2} \int_{0}^{\infty} \frac{d z}{z} \operatorname{Tr} e^{-z H}=b_{\alpha} R^{\mu \alpha} \int_{0}^{\infty} \frac{d z}{z}\langle x| \pi_{\mu} \exp \left(z\left(\pi_{\nu} \pi^{\nu}\right)\right)$
where $R^{\mu \alpha}$ is the combination of the field tensor $F^{\mu \nu}$ and the metric $g^{\mu \nu}$
The matrix element $\langle x| \ldots|x\rangle$ can be transformed into the form:

where P_{μ}^{ρ} is a polynomial in the field strength. This latter expression
vanishes due to the gauge invariance of the theory

Induced Chern-Simons term in the constant field [2]

$F_{\mu \nu}=$ const

$$
\begin{gathered}
\exp (\tau(A+B))=\exp (\tau A) \cdot \exp (\tau B) \cdot L^{-1}(\tau), \frac{d \ln L}{d \tau}=B-e^{-\tau B} f(\tau) e^{\tau B} \\
A \equiv z \pi^{\mu} \pi_{\mu}-\frac{1}{2} z \sigma^{\mu \nu} F_{\mu \nu}, B \equiv 2 i z \sigma^{\mu \nu} b_{\mu} \pi_{\nu} \gamma^{5}, f(\tau)=e^{-\tau A} B e^{\tau A}
\end{gathered}
$$

Within the linear approximation, taking the trace tr, we obtain:
$i \Gamma^{\mathrm{eff}}(A, b)=-\frac{1}{2} \int_{0}^{\infty} \frac{d z}{z} \operatorname{Tr} e^{-z H}=b_{\alpha} R^{\mu \alpha} \int_{0}^{\infty} \frac{d z}{z}\langle x| \pi_{\mu} \exp \left(z\left(\pi_{\nu} \pi^{\nu}\right)\right)|x\rangle$, where $R^{\mu \alpha}$ is the combination of the field tensor $F^{\mu \nu}$ and the metric $g^{\mu \nu}$.

The matrix element $\langle x| \ldots|x\rangle$ can be transformed into the form:

Induced Chern-Simons term in the constant field [2]

$F_{\mu \nu}=c o n s t$

$$
\begin{gathered}
\exp (\tau(A+B))=\exp (\tau A) \cdot \exp (\tau B) \cdot L^{-1}(\tau), \frac{d \ln L}{d \tau}=B-e^{-\tau B} f(\tau) e^{\tau B} \\
A \equiv z \pi^{\mu} \pi_{\mu}-\frac{1}{2} z \sigma^{\mu \nu} F_{\mu \nu}, B \equiv 2 i z \sigma^{\mu \nu} b_{\mu} \pi_{\nu} \gamma^{5}, f(\tau)=e^{-\tau A} B e^{\tau A}
\end{gathered}
$$

Within the linear approximation, taking the trace tr, we obtain:
$i \Gamma^{\mathrm{eff}}(A, b)=-\frac{1}{2} \int_{0}^{\infty} \frac{d z}{z} \operatorname{Tr} e^{-z H}=b_{\alpha} R^{\mu \alpha} \int_{0}^{\infty} \frac{d z}{z}\langle x| \pi_{\mu} \exp \left(z\left(\pi_{\nu} \pi^{\nu}\right)\right)|x\rangle$,
where $R^{\mu \alpha}$ is the combination of the field tensor $F^{\mu \nu}$ and the metric $g^{\mu \nu}$.
The matrix element $\langle x| \ldots|x\rangle$ can be transformed into the form:
$\int d^{4} x\langle x| \pi_{\mu} e^{\left(z\left(\pi_{\nu} \pi^{\nu}\right)\right)}|x\rangle=\left.P_{\mu}^{\rho} \frac{\partial}{\partial \lambda^{\rho}} \int d^{4} x\langle x| e^{-\frac{1}{4} z \lambda^{2}} e^{\left(z\left(\pi^{\nu}+\lambda^{\nu}\right)^{2}\right)}|x\rangle\right|_{\lambda=0}$,
where P_{μ}^{ρ} is a polynomial in the field strength. This latter expression vanishes due to the gauge invariance of the theory.

Induced Chern-Simons term in the constant field [3]

In the following papers, the Chern-Simons-like contribution of the form $\beta \tilde{F}^{\mu \nu} A_{\mu} b_{\nu}$ to the effective action of QED was calculated:

- R. Jackiw and V.A. Kostelecky, Phys. Rev. Lett 82, 3572 (1999).

The earliest publication, the coefficient $\beta=\frac{3}{16 \pi^{2}}$

- M.B. Hott, J.L.Tomazelli, Induced Lorentz and PCT symmetry Breaking in External Electromagnetic Field, arXiv/hep-th/9912251.
$\beta \neq 0$, though depends on the regularization scheme.
- Y.A. Sitenko, K.Y. Rulik On the effective lagrangian in spinor electrodynamics with added violation of Lorentz and CPT symmetries, arXiv/hep-th/0212007.
- ...and others

Our calculations show that no Chern-Simons term (linear in b_{μ}) is induced by a fermion loop in the framework of the extended QED
V. Ch. Zhukovsky (MSU)

Vacuum Polarization and Casimir Effect
(1) Introduction
(2) Casimir effect within extended QED (O.G.Kharlanov and V.Ch.Zhukovsky)

- Vacuum energy via the zeta function regularization
- Vacuum energy via the residue theorem
- Conclusion
(3) Effective action in QED under the Lorentz violation (A.F.Bubnov and V.Ch.Zhukovsky)
- The Model
- Induced Chern-Simons term in the constant field
- Quadratic contribution
- Results and conclusion

Quadratic contribution: Magnetic field [1]

Constant homogeneous magnetic field: $\mathrm{F}^{12}=-\mathrm{F}^{21}=-\mathrm{H}$, $b_{\mu}=\left\{b_{0}, 0,0,0\right\}$.

Then the exponent $e^{\tau(A+B)}=e^{\tau A} e^{\tau B}$ is "decoupled" in the expression for the effective action, since

$$
[A, B]=4 z^{2} \gamma^{5} b^{\mu} \Pi_{\nu} \sigma^{\nu \alpha} F_{\alpha \mu}=0
$$

The b_{0}^{2}-contribution to the effective action reads:

where A_{0}, A_{1} are certain field combinations
The matrix element in the integrand expression

Quadratic contribution: Magnetic field [1]

Constant homogeneous magnetic field: $\mathrm{F}^{12}=-\mathrm{F}^{21}=-\mathrm{H}$, $b_{\mu}=\left\{b_{0}, 0,0,0\right\}$.

Then the exponent $e^{\tau(A+B)}=e^{\tau A} e^{\tau B}$ is "decoupled" in the expression for the effective action, since

$$
[A, B]=4 z^{2} \gamma^{5} b^{\mu} \Pi_{\nu} \sigma^{\nu \alpha} F_{\alpha \mu}=0
$$

The b_{0}^{2}-contribution to the effective action reads:

$$
\begin{gathered}
i \Gamma_{b_{0}^{\mathrm{eff}}}^{\mathrm{ef}}(H, b)=-2 \int_{0}^{\infty} \frac{d z}{z} \\
\times\left.\left(A_{0}+\frac{A_{1}}{z} \frac{\partial}{\partial \alpha}\right) \int d^{4} x\langle x| e^{-z\left(\left(\pi_{4}\right)^{2}+\alpha\left(\pi_{\perp}^{2}+\pi_{\|}^{2}\right)\right)}|x\rangle\right|_{\alpha=1},
\end{gathered}
$$

where A_{0}, A_{1} are certain field combinations.

The matrix element in the integrand expression

Quadratic contribution: Magnetic field [1]

Constant homogeneous magnetic field: $\mathrm{F}^{12}=-\mathrm{F}^{21}=-\mathrm{H}$, $b_{\mu}=\left\{b_{0}, 0,0,0\right\}$.

Then the exponent $e^{\tau(A+B)}=e^{\tau A} e^{\tau B}$ is "decoupled" in the expression for the effective action, since

$$
[A, B]=4 z^{2} \gamma^{5} b^{\mu} \Pi_{\nu} \sigma^{\nu \alpha} F_{\alpha \mu}=0
$$

The b_{0}^{2}-contribution to the effective action reads:

$$
\begin{gathered}
i \Gamma_{b_{0}^{2}}^{\mathrm{eff}}(H, b)=-2 \int_{0}^{\infty} \frac{d z}{z} \\
\times\left.\left(A_{0}+\frac{A_{1}}{z} \frac{\partial}{\partial \alpha}\right) \int d^{4} x\langle x| e^{-z\left(\left(\pi_{4}\right)^{2}+\alpha\left(\pi_{\perp}^{2}+\pi_{\|}^{2}\right)\right)}|x\rangle\right|_{\alpha=1},
\end{gathered}
$$

where A_{0}, A_{1} are certain field combinations.
The matrix element in the integrand expression

$$
\int d^{4} x\langle x| e^{-z(\pi)_{E}^{2}}|x\rangle=\frac{H}{16 \pi^{2} z \sqrt{\alpha}} \frac{1}{\operatorname{sh}(\alpha z H)} .
$$

Quadratic contribution: Magnetic field [2]

Finally we find the b_{0}^{2}-contribution to the effective action:

$$
i \Gamma_{b_{0}^{2}}^{\mathrm{eff}}(H, b)=-\frac{b_{0}^{2}}{4 \pi^{2}} \int_{0}^{\infty} d z e^{-z m^{2}}\left(\frac{H^{2}}{\sinh ^{2}(z H)}\right),
$$

and, after the renormalization,

This integral leads to the Euler psi-function, taking the magnetic field strength H exactly into consideration

Quadratic contribution: Magnetic field [2]

Finally we find the b_{0}^{2}-contribution to the effective action:

$$
i \Gamma_{b_{0}^{2}}^{\mathrm{eff}}(H, b)=-\frac{b_{0}^{2}}{4 \pi^{2}} \int_{0}^{\infty} d z e^{-z m^{2}}\left(\frac{H^{2}}{\sinh ^{2}(z H)}\right),
$$

and, after the renormalization,

$$
i \Gamma_{\text {ren } b_{0}^{2}}^{\mathrm{eff}}(H, b)=-\frac{b_{0}^{2}}{4 \pi^{2}} \int_{0}^{\infty} d z e^{-z m^{2}}\left(\frac{H^{2}}{\sinh ^{2}(z H)}-\frac{1}{z^{2}}\right) .
$$

This integral leads to the Euler psi-function, taking the magnetic field strength H exactly into consideration

$$
i \Gamma_{\text {ren } b_{0}^{2}}^{\mathrm{eff}}(H, b)=-b_{0}^{2} \frac{m^{2}}{4 \pi^{2}}\left(\psi\left(m^{2} / 2 H\right)-\log \left(m^{2} / 2 H\right)+\frac{H}{m^{2}}\right) .
$$

Quadratic contribution: Electric field

Constant homogeneous electric field: $\mathrm{F}^{03}=-\mathrm{F}^{30}=\mathrm{E}$, $b_{\mu}=\left\{0, b_{1}, 0,0\right\}$.

Like in the previous case, the exponent of the Hamiltonian is "decoupled" since

$$
[A, B]=4 z^{2} \gamma^{5} b^{\mu} \Pi_{\nu} \sigma^{\nu \alpha} F_{\alpha \mu}=0
$$

The calculations are nearly analogous to the magnetic field case and give:

and, after the renormalization, the effective action

Quadratic contribution: Electric field

Constant homogeneous electric field: $\mathrm{F}^{03}=-\mathrm{F}^{30}=\mathrm{E}$, $b_{\mu}=\left\{0, b_{1}, 0,0\right\}$.

Like in the previous case, the exponent of the Hamiltonian is "decoupled" since

$$
[A, B]=4 z^{2} \gamma^{5} b^{\mu} \Pi_{\nu} \sigma^{\nu \alpha} F_{\alpha \mu}=0
$$

The calculations are nearly analogous to the magnetic field case and give:

$$
i \Gamma_{b_{1}^{2}}^{\mathrm{eff}}(E, b)=-\frac{b_{1}^{2}}{4 \pi^{2}} \int_{0}^{\infty} d z e^{-z m^{2}}\left(\frac{E^{2}}{\sin ^{2}(z E)}\right),
$$

and, after the renormalization, the effective action

Quadratic contribution: Electric field

Constant homogeneous electric field: $\mathrm{F}^{03}=-\mathrm{F}^{30}=\mathrm{E}$, $b_{\mu}=\left\{0, b_{1}, 0,0\right\}$.

Like in the previous case, the exponent of the Hamiltonian is "decoupled" since

$$
[A, B]=4 z^{2} \gamma^{5} b^{\mu} \Pi_{\nu} \sigma^{\nu \alpha} F_{\alpha \mu}=0
$$

The calculations are nearly analogous to the magnetic field case and give:

$$
i \Gamma_{b_{1}^{2} \mathrm{eff}}^{\mathrm{e}}(E, b)=-\frac{b_{1}^{2}}{4 \pi^{2}} \int_{0}^{\infty} d z e^{-z m^{2}}\left(\frac{E^{2}}{\sin ^{2}(z E)}\right),
$$

and, after the renormalization, the effective action

$$
i \Gamma_{b_{1}^{2}}^{\mathrm{eff}}(E, b)=-\frac{b_{1}^{2}}{4 \pi^{2}} \int_{0}^{\infty} d z e^{-z m^{2}}\left(\frac{E^{2}}{\sin ^{2}(z E)}-\frac{1}{z^{2}}\right) .
$$

Effective action asymptotics: Magnetic field

Consider the asymptotics of the effective action $i \Gamma_{b_{0}^{2}}^{\mathrm{eff}}(H, b)$.

In the strong field, $\mathrm{H} \gg \mathrm{H}_{0}$

Effective action asymptotics: Magnetic field

Consider the asymptotics of the effective action $i \Gamma_{b_{0}^{2}}^{\mathrm{eff}}(H, b)$. In the weak field, $H \ll H_{0}$ (here $H_{0}=m^{2} / e=4.41 \times 10^{13} \mathrm{Gs}$):

$$
\begin{aligned}
i \Gamma_{b_{0}^{\mathrm{eff}}}^{\mathrm{ef}}(H, b) \sim & b_{0}^{2} \frac{H^{2}}{m^{2}}+\mathcal{O}\left(\left(H^{2} b_{0} / m^{3}\right)^{2}\right), \quad \Gamma_{H-E}^{\mathrm{eff}}(H) \sim \frac{H^{4}}{m^{4}}, \\
& \frac{i \Gamma_{b_{0}^{2}}^{\mathrm{eff}}(H, b)}{i \Gamma_{H-E}^{\mathrm{eff}}(H)} \sim\left(\frac{b_{0}}{m}\right)^{2}\left(\frac{H_{0}}{H}\right)^{2} .
\end{aligned}
$$

In the strong field, $\mathrm{H} \gg \mathrm{H}_{0}$

log

Effective action asymptotics: Magnetic field

Consider the asymptotics of the effective action $i \Gamma_{b_{0}^{2}}^{\mathrm{eff}}(H, b)$. In the weak field, $H \ll H_{0}$ (here $H_{0}=m^{2} / e=4.41 \times 10^{13} \mathrm{Gs}$):

$$
\begin{aligned}
i \Gamma_{b_{0}^{\mathrm{eff}}}^{\mathrm{ef}}(H, b) \sim & b_{0}^{2} \frac{H^{2}}{m^{2}}+\mathcal{O}\left(\left(H^{2} b_{0} / m^{3}\right)^{2}\right), \quad \Gamma_{H-E}^{\mathrm{eff}}(H) \sim \frac{H^{4}}{m^{4}}, \\
& \frac{i \Gamma_{b_{0}^{2}}^{\mathrm{eff}}(H, b)}{i \Gamma_{H-E}^{\mathrm{ef}}(H)} \sim\left(\frac{b_{0}}{m}\right)^{2}\left(\frac{H_{0}}{H}\right)^{2} .
\end{aligned}
$$

In the strong field, $H \gg H_{0}$:

$$
\begin{gathered}
i \Gamma_{b_{0}^{2}}^{\mathrm{eff}}(H, b) \sim b_{0}^{2} H+ \\
\mathcal{O}\left(b_{0}^{2} m^{2} \log \left(\frac{H_{0}}{H}\right)\right), \quad i \Gamma_{H-E}^{\mathrm{eff}}(H) \sim m^{4}\left(\frac{H}{H_{0}}\right)^{2} \log \left(\frac{H}{H_{0}}\right), \\
\\
\frac{i \Gamma_{H-E}^{\mathrm{eff}}(H)}{i \Gamma_{b_{0}^{2}}^{\mathrm{eff}}(H, b)} \sim \frac{H}{H_{0}}\left(\frac{m}{b_{0}}\right)^{2} \log \left(\frac{H}{H_{0}}\right) .
\end{gathered}
$$

(1) Introduction
(2) Casimir effect within extended QED (O.G.Kharlanov and V.Ch.Zhukovsky)

- Vacuum energy via the zeta function regularization
- Vacuum energy via the residue theorem
- Conclusion
(3) Effective action in QED under the Lorentz violation (A.F.Bubnov and V.Ch.Zhukovsky)
- The Model
- Induced Chern-Simons term in the constant field
- Quadratic contribution
- Results and conclusion

We have elaborated a new method of calculating the contribution of the CPTand Lorentz-violating correction b_{μ} to the effective action of QED, which accounts for the external field exactly and is based on the proper time technique.

Using this method, we have obtained the following results:

- No effective Chern-Simons term linear in b^{μ} in extended QED, in agreement with the publications:
(1) Y.A. Sitenko, K.Y. Rulik ArXiv/hep-th/0212007,
(2) B. Altschul ArXiv/hep-th/0602235,
- The b_{0}^{2}-term in the effective action, for the magnetic and the electric fields exactly taken into account.
- The Heisenberg-Euler-to- b_{0}^{2} correction ratio $\frac{i \Gamma_{H-E}^{\mathrm{eff}}(H)}{i \sum_{b-1}^{e-f}(H, b)}$ is evaluated in the weak- and strong-field cases.
References:
[2] V.Ch.Zhukovsky and A.Bubnov, to be published in arXiv/hep-th.

Thank you for your attention!

