A Phenomenological Model of Inflation from Quantum Gravity

Nick Tsamis (U. Crete)
Richard Woodard (U. Florida)
arXiv:0409.2368

Quant. Gravitational Inflation

- Fund. IR gravity: $G_{\mu\nu} = -\Lambda g_{\mu\nu}$
- ullet $\Lambda \sim [10^{12} \ GeV]^2 \ starts \ inflation$
 - $ds^2 = -dt^2 + a^2(t) dx^2$ with $a(t) = e^{Ht}$
- QG "friction" stops inflation
 - $\rho_1 \sim +\Lambda^2$
 - $\rho_2 \sim -G\Lambda^3 \ln[a(t)]$
 - $ho_L \sim \Lambda^2 \left[\text{GAln(a)} \right]^{\text{L-1}}$
- Hence p \sim - $\rho \sim \Lambda^2$ f[G Λ ln(a)]

4

Only Causality Stops Collapse!

- IR gravitons $\rightarrow \rho_1 \sim +\Lambda^2$
- w/o causality $\rightarrow \rho_2 \sim -G\Lambda^3 a^2(t)$
 - R(t) \sim a(t)/H and M(t) \sim H a³(t)
 - $\Delta E(t) = -GM^2/R \sim -GH^3 a^5(t)$
- Causality changes powers of a(t) to powers of ln[a(t)]
- But grav. Int. E. still grows w/o bound

Need Phenomenological Model

- Advantages of QG Inflation
 - Natural initial conditions
 - No fine tuning
 - Unique predictions
- But tough to USE!
- Try guessing most cosmologically significant part of effective field eqns

$G_{\mu\nu} = -\Lambda g_{\mu\nu} + 8\pi G T_{\mu\nu}[g]$

- $T_{\mu\nu}[g] = p g_{\mu\nu} + (\rho+p) u_{\mu}u_{\nu}$
 - Posit p[g]
 - Infer ρ and u_{μ} from conservation
- Getting p[de Sitter] = Λ^2 f[G Λ ln(a)]
 - [...] must be nonlocal because

$$R_{\mu\nu\rho\sigma} = \Lambda/3 \left[g_{\mu\rho} g_{\nu\sigma} - g_{\mu\sigma} g_{\nu\rho} \right]$$

Simplest is X = 1/□ R

$$R \& \Box \equiv (-g)^{-1/2} \partial_{\mu} [(-g)^{1/2} g^{\mu\nu} \partial_{\nu}]$$

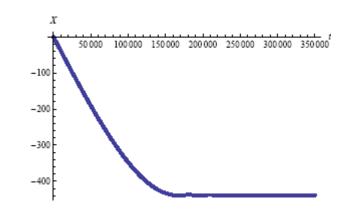
- \blacksquare R = 6 dH/dt + 12 H² for flat FRW
- - Hence $1/\Box f = -\int^t du \ a^{-3} \int^u dv \ a^3 f(v)$
- For de Sitter $a(t) = e^{Ht}$ and dH/dt = 0
 - $1/\Box$ R = -4 Ht + 4/3 [1 e^{-3Ht}] \sim -4 In(a)

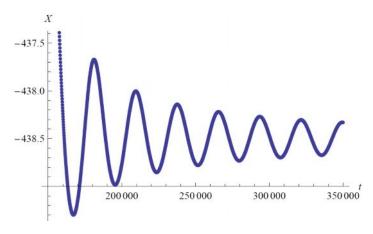
Spatially Homogeneous Case

- $\mathbf{G}_{\mu\nu} = (\mathbf{p} \mathbf{\Lambda})\mathbf{g}_{\mu\nu} + (\rho + \mathbf{p}) \mathbf{u}_{\mu}\mathbf{u}_{\nu}$
 - $X = 1/\square R = -\int^t du \ a^{-3} \int^u dv \ a^3 [12H^2 + 6dH/dv]$
 - $p = \Lambda^2 f(-G\Lambda X)$
 - ρ +p = $a^{-3}\int^t du \ a^3 \ dp/du$ and $u^{\mu} = \delta^{\mu}_0$
- Two Eqns
 - $3H^2 = \Lambda + 8\pi G \rho$
 - $-2dH/dt 3H^2 = -\Lambda + 8\pi G p$ (easier)
- Parameters
 - 1 Number: GA (nominally $\sim 10^{-12}$)
 - 1 Function: f(x) (needs to grow w/o bound)

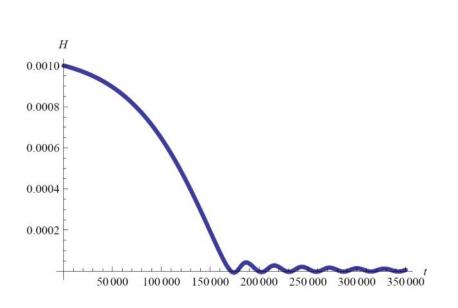
Numerical Results for $G\Lambda=1/300$ and $f(x)=e^{x}-1$

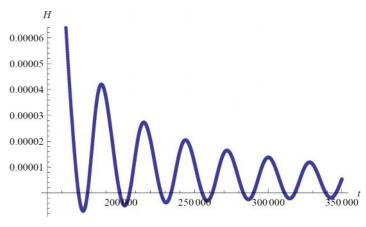
- $X = -\int^t du \ a^{-3} \int^u dv \ a^3 R$
- Criticality $p = \Lambda^2 f(-G\Lambda X) = \Lambda/8\pi G$
- Evolution of X(t)
 - Falls steadily to X_c
 - Then oscillates with constant period and decreasing amplitude
 - For all f(x) growing w/o bound

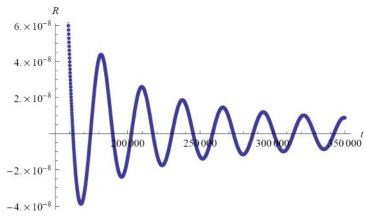




Inflation Ends, H(t) goes < 0, R(t) oscillates about 0







Analytic Treatment ($\epsilon \equiv G\Lambda$)

- 2 dH/dt + 3 H² = Λ [1 $8\pi\epsilon$ f(- ϵ X)]
- $X(t) = X_c + \Delta X(t)$
 - $f \approx f_c \epsilon \Delta X f'_c$
 - 2dH/dt + 3 H² \approx 24 $\pi\epsilon^2$ f'_c Δ X
- Use $R = 6 dH/dt + 12 H^2$
 - L.H.S. = $R/3 H^2$
 - $\Delta X = 1/\square R X_c$
- Act $\Box = -[d/dt + 3H]d/dt$ to localize
 - $[(d/dt)^2 + 2H(d/dt) + \omega^2]R \approx 0$
 - $R(t) \approx \sin(\omega t)/a(t)$
 - $\omega^2 = 24\pi\epsilon^2 \Lambda f'_c$ (agrees with plots!)

Tensor Perturbations

No change from usual eqn $\ddot{x} + 3 H \dot{x} + k^2/a^2 x = 0$

- Of course a(t) is unusual . . .
 - Oscillations in H(t)
 - And H(t) drops below zero!
- But this happens at the end of inflation
 - Little effect on far super-horizon modes

Origin of Scalar Perturbations

1. In Fundamental QG Inflation

- $\mathcal{L} = 1/16\pi G (R 2\Lambda)(-g)^{1/2}$
- Two h_{ij} 's can make a scalar! E.g. Graviton KE: $\dot{h}_{ij} \dot{h}_{ij} + \nabla h_{ij} \nabla h_{ij}$
- Usually negligible but if IR logs make homogeneous ~ O(1) maybe perts ~ O(GΛ)

2. In Phenomenological Model

- $T_{\mu\nu}[g] = p g_{\mu\nu} + (\rho+p) u_{\mu}u_{\nu}$
- $p = \Lambda^2 f(-G\Lambda/\Box R)$ fixed by retarded BC
- But ρ and u_i at t=0 not fixed by $D^{\mu}T_{\mu\nu} = 0$

Analysis (in conformal coords)

- 0th order: $2a''/a^3 a'^2/a^4 = \Lambda[1 8\pi\epsilon f(-\epsilon X_0)]$
- $h_{\mu\nu}dx^{\mu}dx^{\nu} = -2\phi d\eta^2 2B_{,i}dx^id\eta 2[\psi\delta_{ij} + E_{,ij}]dx^idx^j$
 - $\Phi = \phi a'/a (B-E') (B'-E'')$
 - $\Psi = \psi + a'/a (B-E')$
- G_{ij} Eqn $\rightarrow \Psi = \Phi$ and $2/a^2 \Phi'' + 6a'/a^3 \Phi' + [4a''/a^3 2a'^2/a^4] \Phi = -8\pi\epsilon^2 \Lambda f'(-\epsilon X_0)$ $\times 1/\Box_0 [\nabla^2/a^2 \Phi - 6/a^2 \Phi'' - 24 a'/a^3 \Phi' - 4/a^2 X_0' \Phi']$

$d^{2}\Phi/dt^{2} + 4Hd\Phi/dt + (2dH/dt + 3H^{2})\Phi = -8\pi\epsilon^{2}\Lambda f'(-\epsilon X(t)) NL$

- Early \rightarrow f'(- ϵ X(t)) << 1
 - + de Sitter $\rightarrow \Phi_1 = 1/a$ and $\Phi_2 = 1/a^3$
 - Same for all k's
- Late \rightarrow f'(- ϵ X(t)) \approx f_c'
 - Oscillates with constant frequency ω d² Φ /dt² \approx - ω ² 1/ \Box [d² Φ /dt²]
 - Amplitude seems constant (numerically)
- Energy transfer to matter crucial

After Inflation

- Model driven by $X = 1/\square R$
 - Oscillations & H < 0 → efficient reheating</p>
 - $H = 1/2t \rightarrow R = 6 dH/dt + 12 H^2 = 0$
- QG ends inflation, reheats & then turns off for most of cosmological history
 - $X(t) = -\int^t du \ a^{-3} \int^u dv \ a^3 \ R \rightarrow X_c$

Two Problems at Late Times

Eventually matter dominates

- H(t) goes from 1/(2t) to 2/(3t)
- $R = 6dH/dt + 12H^2$ from 0 to $3/(4t^2)$
- $X = 1/\square R$ from X_c to $X_c 4/3$ ln(t/t_{eq})
- 1. The Sign Problem:

This gives further screening!

2. The Magnitude Problem:

$$p \approx$$
 –Λ/G (GΛ)² $f_c{'}\,\Delta X \approx$ -1086 p_0 x $f_c{'}\,\Delta X$

Magnitude Problem: Too many Λ's

- $p = \Lambda^2 f(-G\Lambda 1/\Box R)$
 - Dangerous changing initial Λ²
 - But can do -G Λ 1/ \Box [R] \rightarrow -G/ \Box [" Λ "R]
- Properties of "Λ"
 - Approximately Λ during inflation
 - Approx. R by onset of matter domination
 - No change to initial value problem
 - Invariant functional of metric
- Many choices but " Λ " = R(t/10) works
 - Can specify invariantly

Same as before with " Λ " = $\frac{1}{4}$ R(t/10)



Sign Problem: R(t) > 0

- $p = \Lambda^2 f(-G/\square["\Lambda" R])$
- Need to add term to "Λ" R inside []
 - Nearly zero during inflation & radiation
 - Comparable to R² after matter
 - Opposite sign
- Many choices but □R works
 - $R = 4/(3t^2)$ $\rightarrow \Box R = -8/(3t^4)$

Conclusions

- Advantages of QG Inflation
 - Based on fundamental IR theory → GR
 - 2. Λ not unreasonably small!
 - 3. A starts inflation naturally
 - 4. QG back-reaction stops Simple idea: Grav. Int. E. grows faster than V
 - 1 free parameter: Λ
- But tough to use → Phenom. Model

$T_{\mu\nu}[g] = p g_{\mu\nu} + (\rho+p) u_{\mu}u_{\nu}$

- Guess p[g] = Λ^2 f(-G Λ X)
 - $X_1 = 1/\square R$
 - Infer ρ and u_i from conservation
- Homogeneous evolution: (generic f)
 - X falls to make p cancel $-\Lambda/8\pi G$
 - Then oscillate with const. period & decreasing amp.
- Reheats to radiation dom. (R=0)
 - Matter dom. → R≠0
 - $\Lambda X_2 = 1/\square$ [" Λ " R + \square R] can give late acceleration
- Perturbations
 - Little change to observable tensors
 - Scalars differ but still not clear