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i Quant. Gravitational Inflation

= Fund. IR gravity: G,, = -Ag,,,
= \ ~ [1012 GeV]? starts inflation
» ds? = -dt?2 + a2(t) dx? with a(t) = eftt
= QG “friction” stops inflation
s p, ~ +N
= p, ~—GA3 In[a(t)]
= p; ~— N [GAIn(a)]-!
= Hence p ~ -p ~ A2 f[GAIn(a)]




i Only Causality Stops Collapse!

= IR gravitons = p, ~ +/A?

= W/0 causality =» p, ~ —GA3 a%(t)
« R(t) ~ a(t)/H and M(t) ~ H a3(t)
« AE(t) = -GM2/R ~ —GH3 a5(t)

= Causality changes powers of a(t) to
powers of In[a(t)]

= But grav. Int. E. still grows w/o bound




i Need Phenomenological Model

= Advantages of QG Inflation
= Natural initial conditions
= No fine tuning
= Unique predictions

= But tough to USE!

= Try guessing most cosmologically
significant part of effective field egns




i G,=-Ag, + 8rGT  |d]

= T,9]1=pg, + (p*+p)uu,
= Posit p[g]
= Infer p and u, from conservation

= Getting p[de Sitter] = A2 f[GA In(a)]
= [...] must be nonlocal because

R,pra = /\/3 [g,up gya — g,ua gyp]
= Simplestis X = 1/[1R



i R & 1=(-9)"0d,[(-9)"g"0,]

= R = 6 dH/dt + 12 H? for flat FRW

s f(t) = -a3 d/dt [a3 df/dt
= Hence 1/00f = -ftdu a3 [udv a3 f(v)

= For de Sitter a(t) = e"tand dH/dt = 0
« 1/0R=-4Ht+4/3[1-e3"]~ -4In(a)




i Spatially Homogeneous Case

= G, =(p-Ng,, + (p+p) uu,
= X=1/0JR = -ftdu a3[udv a3 [12H? + 6dH/dV]
m P = /\2 f('G/\ X)
= p+p =a3[tdua’dp/du and u+ = O,
= Two Egns
o 3H2 —_ /\ + 87TG P
= -2dH/dt - 3H2=-A + 872G p (easier)
= Parameters
= 1 Number: GA (nominally ~ 10-12)
= 1 Function: f(x) (needs to grow w/o bound)



Numerical Results for
i GA=1/300 and f(x) = ex1

= X=-Jtdu a3[udv aR
= Criticality

p = AAf(-GAX) = N\/87G
= Evolution of X(t)

= Falls steadily to X_

= Then oscillates with
constant period and
decreasing amplitude

= For all f(x) growing
w/0 bound
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Inflation Ends, H(t) goes < 0,
$ R(t) oscillates about 0
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i Analytic Treatment (e = GA)

= 2 dH/dt + 3 H2 = A[1 - 8nef(-eX)]
s X(b) = Xc + AX(t)
o frof - eAXT,
» 2dH/dt + 3 H? ~ 24re> f'. AX
= UseR =6 dH/dt + 12 H?
= L.H.S. = R/3 —H?
= AX =1/R-X
= Act [ = -[d/dt + 3H]d/dt to localize
« [(d/dbt)? + 2H(d/dt) + w*]R ~ 0
= R(t) =~ sin(w t)/a(t)
= w2 = 247we\f.  (agrees with plots!)



i Tensor Perturbations

= No change from usual egn
X+3Hx+k¥azx=0
= Of course a(t) is unusual . . .

= Oscillations in H(t)
=« And H(t) drops below zero!

= But this happens at the end of inflation
=« Little effect on far super-horizon modes



Origin of Scalar Perturbations

+

1. In Fundamental QG Inflation
= L =1/167G (R - 2A)(-g)”
= Two hy's can make a scalar!
E.g. Graviton KE: h; h; + Vh; Vh;
= Usually negligible but if IR logs make
homogeneous ~ O(1) maybe perts ~ O(GA)
2. In Phenomenological Model
= T,l9l=pg, + (p+p) Uy,
= p = NAf(-GA/U R) fixed by retarded BC
= Butpand y at t=0 not fixed by D*T , = 0



i Analysis (in conformal coords)

s O order: 2a”/a3 - a'?/a* = A[1 — 8mef(-eX;)]
= h WdX“dXV = -2¢dn>— ZBIidX‘dn — 2[¢6ij +
E,ij]dXide
= & =¢—a'la(B-E)-(B-E")
= U=1 + a'/a (B-E)
» GyEgn =& ¥ =¢ and
2/a% d"+6a’'[a’ ¢'+[4a"[a3-2a"’/a*|® = -8we2A\ f'(-eX,)
X 1/0, [V2/a2 & - 6/a2®" - 24 a'/a3 &' - 4/a2 X, I']



d?®/dt? + 4Hd®/dt + (2dH/dt
i +3H2)® = -8ne?A f(-eX(t)) NL

= Early =2 f'(-eX(t)) << 1
= + deSitter =2 &, =1/a and &, = 1/a°
= Same for all k's
= Late D f(-eX(t)) ~ f.
= Oscillates with constant frequency w
d?2®/dt? ~ -w? 1/o [d2®/dt?]
= Amplitude seems constant (numerically)
= Energy transfer to matter crucial




i After Inflation

= Model driven by X = 1/0R
= Oscillations & H < 0 = efficient reheating
s H=1/2t=>R=6dH/dt+ 12 H2=0

= QG ends inflation, reheats & then turns
off for most of cosmological history
« X(t) = -Jtdu a3fudv a3 R 2> X_



i Two Problems at Late Times

Eventually matter dominates
= H(t) goes from 1/(2t) to 2/(3t)
= R = 6dH/dt +12H? from 0 to 3/(4t?)
= X =1/oRfrom X;to X_-4/3 In(t/t.)
1. The Sign Problem:

This gives further screening!

2. The Magnitude Problem:
p ~ =NG (GA)* f' AX ~ -10% p, x f." AX




Magnitude Problem:
Too many A’s

= p=Af(-GA 1/0 R)
= Dangerous changing initial A2
» But can do -GA 1/o[R] = -G/o[ “"A"R]
= Properties of "A”
= Approximately A during inflation
= Approx. R by onset of matter domination
= No change to initial value problem
= Invariant functional of metric

= Many choices but "A” = R(t/10) works
= Can specify invariantly



Same as before with

‘L “A\” = V4 R(t/10)




i Sign Problem: R(t) > 0

s p = A2 f(-G/o[ "A" R])

= Need to add term to "A" R inside [ ]
= Nearly zero during inflation & radiation
= Comparable to R? after matter
= Opposite sign

= Many choices but oR works
= R =4/(3t2) > oR =-8/(3tY



i Conclusions

= Advantages of QG Inflation

Based on fundamental IR theory = GR
>. \ not unreasonably small!
3. N\ starts inflation naturally

+. QG back-reaction stops
Simple idea: Grav. Int. E. grows faster than V

s. 1 free parameter: A
= But tough to use = Phenom. Model

=




i T,9l=pg, + (p+p) uu,

= Guess p[g] = A? f(-GA X)

| Xl — 1/D R

= Infer p and u, from conservation
= Homogeneous evolution: (generic f)

« X falls to make p cancel —=A/87G

= Then oscillate with const. period & decreasing amp.
= Reheats to radiation dom. (R=0)

= Matter dom. = R+#0

= AX, = 1/o[ "A” R + oR] can give late acceleration
= Perturbations

= Little change to observable tensors
= Scalars differ but still not clear



