The embedding-tensor formalism with fields and antifields.

Antoine Van Proeyen K.U. Leuven

Moscow, 4th Sakharov conf., May 21, 2009

Intro and content: 2 formalisms

- There are basic supergravities and deformations.
- The basic ones are known.
 The embedding tensor formalism (Nicolai, Samtleben, de Wit, Trigiante) gives a possible way to describe the deformations.
- This formalism has many features (soft algebra, reducible gauge transformations, on-shell algebra) for which the field-antifield formalism (Batalin-Vilkovisky) is the appropriate language.

The map of supergravities. Dimensions and # of supersymmetries

D	32		24	20	10	6	12	8	4
11	М						-	11	-
10	IIA	IIB			Ι				
9	N=2	F			N=1			1	12
8	N=2				N=1			1.	le
7	N=4				N=2	1		m(6.3)
6	(2,2)		(2,1)		(1,1)	(2,0)		(1,0)	
5	N=8		N=6		N=	=4		N=2	
4	N=8		N=6	N=5	∧N=	=4	N=3	N=2	N=1

This classifies the basic supergravities

Basic supergravities and deformations

Basic supergravities:

have only gauged supersymmetry and general coordinate transformations (and U(1)'s of vector fields).

- No potential for the scalars.
- Only Minkowski vacua.
- In any entry of the table there are 'deformations': without changing the kinetic terms of the fields, the couplings are changed.
 - Many deformations are 'gauged supergravities': gauging of a YM group, introducing a potential.
 - Produced by fluxes on branes

PS: gauging supersymmetry leads to 'supergravity'. 'gauged supergravity': other symmetries gauged

Gaugings

- Start from all the global symmetries δ_{α}
 - Say which ones are gauged by which gauge fields A_{μ}^{M}
- This is encoded in an 'embedding tensor' $\Theta_M^{\ \alpha}$
- The deformations can be obtained by embedding tensors satisfying some constraints.

For D=4 the 'global symmetries' include as well isometries of the scalar manifold as electric-magnetic duality symmetries, which are symplectic transformations

Nicolai, Samtleben, 2000; de Wit, Samtleben and Trigiante, 2005

Vector field strengths are in
$$2m$$
 – symplectic vectors
symplectic transformations
 $\mathcal{L}_{1} = -\frac{1}{4}(\operatorname{Re} f_{AB})F_{\mu\nu}^{A}F^{\mu\nu}B + \frac{1}{8}(\operatorname{Im} f_{AB})\varepsilon^{\mu\nu\rho\sigma}F_{\mu\nu}^{A}F_{\rho\sigma}^{B}$
coupling constants or functions of scalars
 $\partial^{\mu}\operatorname{Im} F_{\mu\nu}^{A-} = 0$ Bianchi identities
 $\partial_{\mu}\operatorname{Im} G_{A}^{\mu\nu-} = 0$ Equations of motion
 $F_{\mu\nu}^{\pm A} = \frac{1}{2}(F_{\mu\nu}^{A} \pm \frac{1}{2}i\varepsilon_{\mu\nu\rho\sigma}F^{\rho\sigma}A)$
 $G_{A}^{\mu\nu-} = -2i\frac{\delta\mathcal{L}_{1}(F^{+},F^{-})}{\delta F_{\mu\nu}^{\mu\nu}} = if_{AB}F^{\mu\nu-B}$
Invariance under Gl($2m$,R)
 $F_{C}^{\prime-} = (C + iDf)F^{-} = (C + iDf)(A + iBf)^{-1}F^{\prime}$
 $\rightarrow if^{\prime} = (C + iDf)F^{-} = (C + iDf)(A + iBf)^{-1}F^{\prime}$
 $\rightarrow if^{\prime} = (C + iDf)(A + iBf)^{-1}$
Should be symmetric
 $S = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \operatorname{Sp}(2m, \mathbb{R})$

Why are not we happy yet?

- Symplectic symmetry broken by gauging: in covariant derivatives appears A_{μ}^{A} : gauge vectors in the 'upper part' of the symplectic vectors
- The symplectic symmetry is only valid for Abelian gauge vectors.
- We would like that the embedding of the gauge group in the symplectic group can be done in a symplectic-covariant way: any symplectic basis should be possible

de Wit, Samtleben and Trigiante, 0507289

 Θ_A^{\sim} $\Theta^{A\alpha}$

Symplectic formalism

- Electric and magnetic gauge fields in symplectic vectors: electric and magnetic components: $A_{\mu}{}^{M} = \begin{pmatrix} A_{\mu}{}^{A} \\ A_{\mu}{}_{A} \end{pmatrix}$
- The gauge group is a subgroup of the isometry group G, defined by an embedding tensor. $\left(\partial_{\mu} A_{\mu}{}^{M} \Theta_{M}{}^{\alpha} \delta_{\alpha}\right) \phi$

all the rigid symmetries

determines which symmetries are gauged, and how: e.g. also the coupling constants. There are several constraints on the tensor.

• if usual electric gauging: $\Theta_M^{\alpha} =$

Embedding in symplectic matrices

The main object defines the embedding of the symmetry group in the symplectic group by $2m\mathbf{\pounds} \ 2m$ matrices t_{α} $X_{MN}^{P} \equiv \Theta_{M}^{\alpha}(t_{\alpha})_{N}^{P}$

• To be symplectic: $X_{M[NP]} = X_{M[N}{}^Q \Omega_{P]Q} = 0$

Transformations of electric-magnetic gauge vectors: $\delta A_{\mu}{}^{M} = \partial_{\mu} \wedge^{M} + X_{PQ}{}^{M} A_{\mu}{}^{P} \wedge^{Q}$

nearly what we expect; however, $X_{PQ}^{M} \neq -X_{QP}^{M}$

Constraints remember: $X_{MN}^{P} \equiv \Theta_{M}^{\alpha}(t_{\alpha})_{N}^{P} \quad X_{MNP} = X_{MN}^{Q} \Omega_{PQ} = X_{MPN}^{Q}$ $\Theta_M{}^{\alpha}\Omega^{MN}\Theta_N{}^{\beta} = 2\Theta^{A[\alpha}\Theta_A{}^{\beta]} = 0$ 1. Locality: 2. Closure of gauge algebra $f_{\beta\gamma}{}^{\alpha}\Theta_{M}{}^{\beta}\Theta_{N}{}^{\gamma} + X_{MN}{}^{P}\Theta_{P}{}^{\alpha} = 0$ Anomaly cancellation: 3. $X_{(MNP)} = \Theta_M{}^\alpha \Theta_N{}^\beta \Theta_N{}^\gamma d_{\alpha\beta\gamma}$ anomaly tensor from possible chiral fermions $\mathcal{A} = \frac{d_{\alpha\beta\gamma}}{\Lambda^{\alpha}} \Lambda^{\alpha} F^{\beta}_{\mu\nu} F^{\gamma}_{\rho\sigma} \varepsilon^{\mu\nu\rho\sigma}$ no chiral anomalies for N, 2: then the constraint is the vanishing of symmetric part : $X_{(MNP)} = 0$ J. De Rydt, T. Schmidt, M. Trigiante, AVP and M. Zagermann, 2008

Main features of the symplectic formalism

• one needs antisymmetric tensors $B_{\mu\nu\alpha}$ to compensate for the extra gauge vectors, with gauge transformations

$$\delta B_{\mu\nu\alpha} = \partial_{[\mu} \Xi_{\nu]\alpha} + \dots$$

• transformation gauge fields: $\delta A_{\mu}{}^{M} = \partial_{\mu} \Lambda^{M} + X_{PQ}{}^{M} A_{\mu}{}^{P} \Lambda^{Q} - \frac{1}{2} \Omega^{MN} \Theta_{N}{}^{\alpha} \Xi_{\mu \alpha}$

action:

- kinetic terms with vectors and antisymmetric tensors
- topological terms (coupling the antisymmetric tensors)
- Generalized Chern-Simons terms

For electric gaugings: antisymmetric tensors decouple, no topological terms

Which antisymmetric tensors?

- For action invariance $B_{\mu\nu\alpha}$:
 - algebra closes modulo field equations: 'on-shell algebra'
- Algebra simpler when one uses antisymmetric tensors B_{µv}^(MN).
 Constraints restrict the (MN) combinations to a particular representation of the global symmetry group
- Hierarchy
 - One needs also higher order antisymmetric tensors, e.g. $C_{\mu\nu\rho}^{M(NP)}$.
 - Action can be constructed with embedding tensor considered as 'spurious field' : leads to a tensor hierarchy, where tensors appears as Lagrange multipliers for constraints on the embedding tensor.

B.de Wit, H. Nicolai, H. Samtleben, 2008; E. Bergshoeff, J. Hartong, O. Hohm, M. Hübscher, T. Ortín, 2009

Algebra

- Jacobi relation modified due to symmetric parts of $X_{(MN)}^{P}$:
- $X_{[MN]}{}^{P}X_{[QP]}{}^{R} + X_{[QM]}{}^{P}X_{[NP]}{}^{R} + X_{[NQ]}{}^{P}X_{[MP]}{}^{R}$ $= -\frac{1}{3} \left(X_{[MN]}{}^{P}X_{(QP)}{}^{R} + X_{[QM]}{}^{P}X_{(NP)}{}^{R} + X_{[NQ]}{}^{P}X_{(MP)}{}^{R} \right) .$
- These $X_{(MN)}^{P}$
 - define zero modes of the transformations (reducible algebra),
 - are considered as fields (soft algebra),
 - imply that the algebra needs field equations (open algebra).

all the features for which the field-antifield (Batalin-Vilkovisky) formalism was designed

Field-antifield formulation

- originally designed for quantisation: ghosts-antighosts + gauge fixing
- it is also useful for encoding all the relations of a general gauge theory in one *master equation*
- Basic ingredients:
 - classical fields completed by
 - any symmetry ! ghost
 - any zero mode ! ghost for ghost

For every Field ! 9 Antifield

PS: antifields are **not** the antighosts, ...

Fields and Antifields

- As canonical conjugates but with opposite statistics
 Antibrackets similar to
 - Poisson brackets, but symmetric

Φ^A	stat	gh	Φ_A^*	stat	gh
ϕ^i	+	0	ϕ_i^*	_	-1
$\parallel c^a$	—	1	c_a^*	+	-2
$\ c^{a_1}$	+	2	$c_{a_{1}}^{*}$	—	-3
	I	I I		I	

$$F,G) = F\frac{\overleftarrow{\partial}}{\partial \Phi^{A}} \cdot \frac{\overrightarrow{\partial}}{\partial \Phi^{*}_{A}} G - F\frac{\overleftarrow{\partial}}{\partial \Phi^{*}_{A}} \cdot \frac{\overrightarrow{\partial}}{\partial \Phi^{A}} G = (G,F)$$

Extended action $S(\Phi, \Phi^*)$

- classical limit $S(\Phi, 0) = S_{cl}(\phi)$
- master equation: (S,S)=0 or $(S,S)=2i \sim \Delta S$ when 9 anomalies
- properness condition $R_{\alpha\beta} \equiv \frac{\partial}{\partial z^{\alpha}} \frac{\partial}{\partial z^{\beta}} S$ has rank N $z^{\alpha} = \{\Phi^{A}, \Phi^{*}_{A}\}, \quad \alpha = 1, \dots, 2N$

Expansion of extended action and master equation

$$S = S_{cl}(\phi) + \phi_i^* R^i{}_a c^a + c_a^* \left(Z^a{}_{a_1} c^{a_1} + f^a{}_{bc} c^c c^b \right) + \phi_i^* \phi_j^* \left(V^{ji}{}_{a_1} c^{a_1} + E^{ji}{}_{bc} c^c c^b \right) + c_{a_1}^* \left(Z^{a_1}{}_{a_2} c^{a_2} + A^{a_1}{}_{b_1c} c^c c^{b_1} + F^{a_1}{}_{abc} c^c c^b c^a \right) + \dots$$

- main terms that determine transformations, zero modes, ...
- if these are sufficiently non-singular (properness condition) existence of solution of the master equation is guaranteed.
 - then master equation contains all the modified Jacobi identities and
 - similar structure equations

Φ^A	stat	gh	Φ^*_A	stat	gh			
ϕ^i	+	0	ϕ_i^*	_	-1			
c^a		1	c^{*}_{a}	+	-2			
c^{a_1}	+	2	$c_{a_1}^{*}$		-3			
•••								

Application in embedding tensor formalism

$$\phi^{i} = \left\{ z, g_{\mu\nu}, A^{\mu M}, B^{\mu\nu MN}, C^{\mu\nu\rho MNP}, \ldots \right\}$$

$$c^{a} = \left\{ c^{M}, c^{\mu MN}, c^{\mu\nu MNP}, \ldots \right\}$$

$$c^{a_{1}} = \left\{ c^{MN}_{(1)}, c^{\mu MNP}_{(1)}, c^{MNPQ}_{(1)}, \ldots \right\}$$

$$\dots$$

$$\delta A_{\mu}{}^{M} = \partial_{\mu} \Lambda^{M} + X_{PQ}{}^{M} A_{\mu}{}^{P} \Lambda^{Q} \equiv D_{\mu} \Lambda^{M}$$
In the extended action:
$$s^{*} D^{i} = c^{a}$$

 $D^{\mu}c^M$

 $H^{\mu\nu M} = F^{\mu\nu M} + X_{(NP)}{}^M B^{\mu\nu NP}.$ $\stackrel{P}{=}_{Q\lceil RS \rfloor} = 2 \left(\delta_Q^{\lceil N} X_{(RS)}^{P \rfloor} - X_{Q\lceil R}^{\lceil N} \delta_{S \rceil}^{P \rfloor} \right)$

Coomans, AVP, in preparation

 $c_{a}^{*}Z^{a}{}_{a_{1}}c^{a_{1}}$

 $\phi^*_i R^i{}_a c^a$

 $c_{a_1}^* Z^{a_1}{}_{a_2} c^{a_2}$

Conclusions

- Embedding tensor formalism allows to describe gauged supergravities in a duality-covariant description
- Has open algebra, reducible algebra, ...: all the features for which the field-antifield formalism (Batalin-Vilkovisky) is designed.
- Has hierarchy of fields, but also of zero modes, zero for zero modes, …
- Master equation produces all the structure equations of the algebra.
- Can also be the first step for quantisation (add trivial systems with antighosts + canonical transformation for gauge fixing)