

# Observing the sky at Very High Energy Gamma-rays :

Current results and perspectives with CTA, the very large Cherenkov Telescope Array

H. Sol, LUTH, Observatoire de Paris(CTA collaboration)4th International Sakharov Conference on Physics, Moscow, May 18-23, 2009

## Outline



- Introduction : ubiquitous VHE gamma-ray emission and the high energy component of the universe
- Results from current IACT, Imaging
   Atmospheric Cherenkov Telescopes
- Some open fields to explore with the next generation of IACT
- A few words on IACT techniques
- The CTA project, Cherenkov Telescope Array



After pionnering works by Whipple, HEGRA, CAT ..., present IACT are revealing our cosmos at V.H.E.









# Soon improved performences towards lower energies :

Extension of present IACT with MAGIC II and HESS II



MAGIC II : 2<sup>nd</sup> 17m tel First data this spring.

HESS II : large 28m tel being added to the present HESS 1 array; under construction. First operations foreseen for 2010.



#### A large variety of TeV $\gamma$ -ray sources ...



Towards a hundred confirmed TeV sources Extragalactic space : Active Galactic Nuclei (>25) Galactic plane : Pulsar Wind Nebulae (PWN), SNR, binaries, diffuse emission, clouds and stellar clusters, «dark accelerators», galactic center A large variety of TeV  $\gamma$ -ray sources ...



from M. Renaud

# ... but a limited number of VHE $\gamma$ -rays emission mechanisms : 2 (+1)

Leptonic scenarios : synchrotron and Inverse-Compton (IC) radiation of relativistic electrons (positrons)
 e + B → e + B + γ, in magnetic field B (also X-rays)
 e + γ<sub>0</sub> → e + γ, with hv ~ min [γ<sub>e</sub><sup>2</sup>hv<sub>0</sub>, γ<sub>e</sub>m<sub>e</sub>c<sup>2</sup>], IC on synchrotron emission (SSC) or on external photon field (EC)

 Hadronic scenarios : Interaction of energetic protons (CR) with local gas and radiation backgrounds

$$p + p \rightarrow N + N + n_1(\pi^+ + \pi^-) + n_2 \pi^0 (N = p \text{ or } n)$$

- $p + \gamma \rightarrow p + \pi^0$ ,  $n + \pi^+$ , others (for  $\gamma_p hv > m_{\pi}c^2$ ); or  $p + e^+ + e^-$  (for  $\gamma_p hv > 2m_ec^2$ )
- Then decay  $\pi^0 \rightarrow 2 \gamma$  produce VHE photons with  $E_{\gamma} \sim E_{\pi} / 2 \sim 10\% E_{p,i}$
- + Decay pions → muons → secondary electrons and neutrinos (also Xrays)

Alternatives : curvature and synchrotron radiation of VHE protons.

 (Annihilation of Dark Matter particles : predictions of supersymmetric theories, Kaluza-Klein scenarios → open questions to explore. No detection yet. A great challenge, but not yet granted !)

# ... but a limited number of VHE $\gamma$ -rays emission mechanisms : 2 (+1)

Leptonic scenarios : synchrotron and Inverse-Compton (IC) radiation of relativistic electrons (positrons)
 e + B → e + B + γ, in magnetic field B (also X-rays)
 e + γ<sub>0</sub> → e + γ, with hv ~ min [γ<sub>e</sub><sup>2</sup>hv<sub>0</sub>, γ<sub>e</sub>m<sub>e</sub>c<sup>2</sup>], IC on synchrotron emission (SSC) or on external photon field (EC)

 Hadronic scenarios : Interaction of energetic protons (CR) with local gas and radiation backgrounds

$$p + p \rightarrow N + N + n_1(\pi^+ + \pi^-) + n_2 \pi^0 \quad (N = p \text{ or } n)$$

 $p + \gamma \rightarrow p + \pi^0$ ,  $n + \pi^+$ , others (for  $\gamma_p hv > m_{\pi}c^2$ ); or  $p + e^+ + e^-$  (for  $\gamma_p hv > 2m_ec^2$ )

Then decay  $\pi^0 \rightarrow 2 \gamma$  produce VHE photons with  $E_{\gamma} \sim E_{\pi} / 2 \sim 10 \% E_{p,i}$ 

+ Decay pions → muons → secondary electrons and neutrinos (also Xrays)

Alternatives : curvature and synchrotron radiation of VHE protons.

→ Reduces to one single need : Efficient particle acceleration processes

### « Universal particle acceleration »

- Acceleration was predicted from all nonuniform velocity fields in low density plasmas, where hydrodynamic power is converted into that of HE particles (*i.e. Katz, 1991 …*)
  - $\rightarrow$  basically, everywhere in the cosmos
  - $\rightarrow$  ubiquity of gamma-ray radiation
- Assumptions : (1) Fermi acceleration processes efficient in any astrophysical flows with low enough density (to avoid collisional losses) (2) Energy density in HE particles grows until it affects the flow and the acceleration
- Indeed, almost all VHE sources detected up to now have powerful outflows (or inflows). Except possibly passive sources (clouds).
- Fermi acceleration : 1<sup>st</sup> and 2<sup>nd</sup> order processes in shocks and turbulence → widely invoked to explain VHE cosmic sources
- Alternatives : magnetic reconnection, direct electric forces, centrifugal force

# High energetic particles : an important component of the universe

- HE particles are an intrinsic component of cosmic plasmas, together with thermal gas and electromagnetic fields
- Significant contribution of HE particles to total pressure and total energy budgets.
   In the interstellar medium , w<sub>HE</sub> ~ w<sub>gas</sub> ~ w<sub>B</sub> ~ w<sub>star-light</sub>
- Reveal the non-thermal universe, out of equilibrium processes, and extreme cosmic events.
- TeV astronomy offers at the moment a unique tool to directly probe the extreme high energy tail of HE particle populations, and extremes accelerators which produce them.

## Some results from current IACT



**Our Galaxy** : SNR, Pulsar Wind Nebulae, pulsars, binary systems, stellar clusters, galactic center and diffuse emission **Extragalactic space** : Active galactic nuclei (blazars and radiogalaxies)

#### SuperNova Remnants

#### ex : RXJ1713.7-3946





Shell-type SNR D ~1.3 kpc Complex V.H.E. morphology rather similar to X-ray map.



→ Presence of particles with
 E> 100 TeV inside the SNR(s).
 Origine of galactic C.R.

Origine of the VHE emission ? Still an open question :

- Hadronic (amplified B, thinness of X-ray filaments)
- Leptonic (lack of thermal X-ray emission)

# Pulsar wind nebulae, the largest VHE galactic population Ex 1 : MSH 15-52



## MSH 15-52

#### VHE profiles



A clearly resolved structure : •15' extension along PWN axis • 5' extension transverse to axis (shown : best gaussian fits and point-like source effect)

#### VHE spectrum



TeV spectrum = power-law with photon index ~ 2.3 up to 30 TeV. Good fit by Inverse Compton of relativistic e<sup>-</sup> on IR from dust, CMB, and starlight in  $B \sim 17 \,\mu G$ 

#### **Pulsar wind nebulae**



Observed spectral evolution with distance from pulsar → significant constraints. Favours leptonic scenario with radiative losses. Ex 2 : HESS J1825-137 evolved (offset) PWN, t ~ 21.4 kyr



Detailed morphology → studies of particle transport, radiative losses ... Particle acceleration mechanisms Fermi processes; contribution to CR? Outer boundary conditions for physics of pulsar magnetospheres

# **PWN** : laboratories to study particle acceleration in shocks and turbulence



A complex shock pattern, with constrained boundary conditions



Acceleration at a relativistic shock : 1st observation of Fermi process in PIC simulations ? (*Spitkovsky, 2008*)

### **Pulsars**



A new field to further study at VHE.

Search for pulsar cut-off, constrain acceleration and emission mechanisms, tests the various gap models, search for short timescale events (drift, glitches ...)

Field to be explored with FERMI, MAGIC II and HESS II. However, cut-off at higher E for mspulsars.

Very first detection of pulsed VHE (> 25 GeV) emission from a *pulsar* : the Crab pulsar  $\rightarrow$  Steep turnover above 10 GeV, but relatively high cutoff energy in phase-averaged spectrum. (Sciences, 2008)



#### Pulse in phase with EGRET



Such detection excludes polar cap scenarios for VHE gamma-rays. Favors outer-gap models. Challenges slot-gap models.



*from Baring, 2004* : gamma-ray absorption by magnetic-pair production in rotating dipolar B

B<sub>0</sub> = 8 x 10<sup>12</sup> G (Crab values) B<sub>crit</sub> = 4.4 x 10<sup>13</sup> G (onset of quantum effects) P = 0.033 s ε<sub>max</sub> ~ 23 GeV → r > 6 R<sub>0</sub>, well above the neutron star surface.



#### **Binary systems :** the HMXRB *LS 5039, microquasar candidate*



# Cygnus X-1

Best candidate for stellar BH (~ 21  $M_{\odot}$ ), among the brightest X-ray sources VHE flares coincident with X-ray flares seen by Swift/BAT, RXTE/ASM and INTEGRAL.





### Gamma-ray Binaries Jets versus pulsar winds scenarios



#### **VHE gamma-rays from young stellar clusters** *Westerlund 2*





#### **Possible origines of the TeV emission ?**

- Colliding winds in the supermassive system WR 20a
- Collective effect of stellar winds from hot and massive stars
- Acceleration in shock from a superbubble wind
- Supersonic winds / ISM interaction
  - → requires further investigation with higher sensitivity and angular resolution.

### The galactic center





2 bright TeV sources : . J1745-290 (Sgr A\* ?) . G0.9+0.1 200 pc, resolution < 6'

Diffuse emission, after subtracting the 2 point sources : VHE fluxes + white contours of CS, a molecular tracer  $\rightarrow$  clear correlation VHE-CS (*Nature, 2006*)

Observed TeV flux requires an energy density of cosmic rays > 3 times the one in the solar environment, and a harder spectrum
→ recent particle acceleration event, < 10 000 years, near the Galactic Center (SNs or active BH).</li>

### Active Galactic Nuclei :

More than 20 blazars of the HBL type detected at VHE (HBL = high frequency peaked BL Lac)



Various hadronic and leptonic models can often fit present available spectra of HBL ex : SED of PKS2155-304 in quiescent state

### Probing highly variable events in TeV blazars



Down to minute time scale ! → Emitting zone smaller than R<sub>g</sub> or very high bulk Lorentz factor



Fit of the 2<sup>nd</sup> flare of PKS2155 by SSC time-dependent modeling : Reproduce light curves and spectra in X and gamma rays



New multi-lambda campaign in 2008, including HESS, Fermi, RXTE, SWIFT, ATOM

Complexity of correlation between various lambda :

Simple SSC model can not explain all correlation properties.

Correlations appear different between active and low states.

#### Active Galactic Nuclei :

# ~ a few **blazars** of others BL Lac types (LBL, IBL and FSRQ) detected at TeV



# **TeV emitting zone(s)** : in a jet or outflow with relativistic bulk motion



BL Lac (HBL, LBL) and FSRQ

**Strong relativitic boosting** (~ factor  $\delta^4$ ) favours detection of blazars/BL Lac However ...

#### Active Galactic Nuclei :

...two **radiogalaxies** now detected at TeV energies, M87 and Cen A





# Size constraints from variability

- TeV variability of M87 requires very small emitting zone, of the order of a few r<sub>g</sub> or even less (even for high δ) under causality argument, as for the BL Lac PKS2155-304 and Mrk501.
- Challenge to efficiently accelerate particles in such small zones (core around BH, or very inner jet).
- Study of close BH environment
- Possibly a mixture of hadronic and leptonic processes → requires further observationnal multilambda constraints.

#### **M 87** : HST-1 versus core scenarios ?

- X-ray light curve of HST-1 obtained by Chandra in 2008 does not follow the TeV one (VERITAS)
- → favours scenarios with TeV emission from inner jet or central core.

- Recent inner jet scenarios, adapted from standard TeV models for HBL but at larger viewing angles (ex: Lenain et al, 2008)

- New core scenarios, with particle acceleration in turbulent accretion disks or in rotating magnetosphere *(ex : Istomin, Sol, 2009)* 



### Exploring radiogalaxies at VHE

- Recent discovery of VHE emission from Cen A with HESS (ApJ Letter, 2009)
- Together with M87, establishes radio galaxies as a new class of VHE emitters
- Three different types of AGN now detected at VHE (blazars, radiogalaxies, and weak AGN as Galactic Center)

   *→ is VHE emission a general feature of AGN and SMBH ?*

Richness of the extragalactic space at VHE, to further explore with MAGIC II, HESS II and CTA





Possible VHE zones ?

- BH magnetosphere
- base of jets
- jets and inner lobes
- pair halo in host galaxy

#### Link to UHECR ?

Origin of the VHE emission ? Compatible with radio core and inner kpc jets of Cen A



SSC emission from jet formation zone (Lenain et al, 2008)

### Further observing AGN at VHE

- TeV observations disentangle non-thermal effects from thermal ones possibly present at others wavelengths → provide a simplified view of the physics at the highest energies.
- Explore variability at the shortest time scales

 $\rightarrow$  jet physics, particle acceleration and radiation processes; search for VHE emission from large scale radio jets and hot spots

→ physics of supermassive Black Hole environmement; constraints on accretion physics

 $\rightarrow$  build a sample of sources at different redshifts, to check validity of Lorentz invariance (and analyze the Extragalactic Background Light in parallel).

- Gather samples of different AGN types to allow statistical studies for classification, unification schemes, AGN evolution. Check the 'blazar sequence', probe the quiescent states ... Look for VHE emission from « dormant » BH or « dead » quasars (could provide evidences for missing SMBH) → Studies of AGN and SMBH evolution, AGN feedback and co-evolution with host-galaxies.
- Importance of multi-messenger and multi-lambda analyses.

# Some open fields to explore with the next generation of IACT



### **Starburst galaxies and ULIRG :**

TeV detection still difficult although flux upper limits are approaching theoretical predictions



Arp 220 (ULIRG)

**NGC 253** 

#### Starburst galaxies and ULIRG :

TeV detection still difficult although flux upper limits are approaching theoretical predictions



### Clusters of galaxies : No VHE detection yet

Non-detection of nearby clusters (A&A, 2009) provides upper limits on the total energy  $E_{CR}$  of hadronic Cosmic Rays :

In Abell 496 :  $E_{CR}$  < 51% of  $E_{th}$ In Abell 85 :  $E_{CR}$  < 8 % of  $E_{th}$ 

Close to theoretical models which predict  $E_{CR} \sim 10$  % of  $E_{th}$ , thermal energy of the ICM.



# Chandra -5 29°30 4 29.00. 28°30'

28.00'

27°30'

27°00'

26°30' HESS

13<sup>h</sup>05<sup>m</sup>

13<sup>h</sup>00<sup>m</sup>

#### **Detect galaxy clusters ?** Coma cluster





Several potential particle acceleration sites :

- Accretion and merger shocks
- SNR and galactic winds
- AGN outbursts
- Turbulence  $\rightarrow$  re-acceleration

Expect VHE radiation from :

- IC of electrons on 3K CMB
- pp collisions (enhanced due to p confinement)

#### **Detect galaxy clusters ?** Coma cluster



Simulated VHE emission from a nearby rich galaxy cluster, with 0.2° resolution, 16°x16°, IC process *(Keshet et al, 2003).* A 5-10 Mpc ring ~ cluster accretion shock?

#### **Detect galaxy clusters at VHE** A project for the next generation of IACT ?



(Brunetti et al, 2008)

### Gamma-ray bursts :

# no signal detected yet above 80-200 GeV despite very fast repositionning



Expected VHE fluxes should be within reach of next IACT generation Difficulties : ToO requiring fast reaction + strong EBL absorption for high z bursts (and low z bursts are often short)

#### A few words on IACT techniques



#### IACT : detecting the flash of Cherenkov light from atmospheric showers



 $(1 TeV = 2.4 x 10^{26} Hz)$ 



Importance of arrays : a 3D view, stereoscopy of showers Improve the sensitivity, bkgd rejection, angular and spectral resolution

## Performance improvements of IACT arrays

IACT raised a wealth of new questions, opened fields to explore in physics, astrophysics, astroparticles, plasma physics ... However fundamental limitations of the technique are not yet reached

Angular resolution and background rejection can be improved, especially around TeV and above (*Hofmann, 2005*)



## Performance improvements of IACT arrays

IACT raised a wealth of new questions, opened fields to explore in physics, astrophysics, astroparticles, plasma physics ... However fundamental limitations of the technique are not yet reached

Angular resolution and background rejection can be improved, especially around TeV and above (*Hofmann, 2005*)

A strong motivation for the next generation of instruments, open facility for a large user community

#### The CTA project, Cherenkov Telescope Array



## Performance goals for CTA

- Jump of factor 10 in sensitivity, down to mCrab

- Very large spectral coverage : a few 10 GeV to above 100 TeV
- Improved angular resolution down to arc-minute range
- Temporal resolution down to sub-minute time scale
   → a VHE timing explorer

 Flexibility of operations : deep field, monitoring, survey, alarms, ToO, full sky coverage, multi-lambda campaigns.

CTA project, artist's view from ASPERA

## The CTA consortium

- > 50 institutes, > 14 countries (~ 300 scientists)
- Present partners : Germany, France, Spain, Italy, Poland, Ireland, UK, South-Africa, Armenia, Switzerland, Finland, Czech Republic, Netherlands, Namibia (+ Sweden)
- Expression of interest by Japan (Jan. 2008; joining now).
- Expressions of interest from Argentina, Denmark, Russia
- Some coordination with US scientists, who work on a project similar to CTA : AGIS, Advanced Gamma-ray Imaging System



## The CTA consortium

- > 50 institutes, > 14 countries (~ 300 scientists)
- Present partners : Germany, France, Spain, Italy, Poland, Ireland, UK, South-Africa, Armenia, Switzerland, Finland, Czech Republic, Netherlands, Namibia (+ Sweden)
- Expression of interest by Japan (Jan. 2008; joining now)
- Expressions of interest from Argentina, Denmark, Russia
- Some coordination with US scientists, who work on a project similar to CTA : AGIS, Advanced Gamma-ray Imaging System
- Regular general CTA meetings since 2006 (Berlin 06, Paris 07, Barcelone 08, Padova 08, Cracow 09; next : Zurich Oct 09)
- Tasks distributed among « WorkPackages » (Science, Site, Simulations, Telescope and Mirrors, Camera with focal plane instrumentation and electronics, Data, Calibration and atmospheric monitoring, Observatory, Quality and risks).

### Goals for CTA sensitivity





#### Galactic plane as seen by HESS



**Simulations CTA/AGIS** *Digel + Funk (Stanford) + Hinton (Leeds)* 

### Improvement of angular resolution

(can be 2 orders of magnitude better with IACT at a few TeV than GLAST at 1 GeV)

Angular resolution of 0.2 degrees :



6 degrees FoV, > 50 GeV

### Improvement of angular resolution

(can be 2 orders of magnitude better with IACT at a few TeV than GLAST at 1 GeV)

Angular resolution of 0.05 degrees :



6 degrees FoV, > 1 TeV

# **On-going Design Studies**

- Aims : optimize the performances and reliability, lower the costs (150 M€ class project)
- Optimize the array layout : fine tuning of dish size, FoV, pixel size, spacing and arrangement
- Improve photo sensors and electronic signal recording
- Analyze array trigger schemes
- Optimize telescope structure, optics and mirrors
- Prototypes before large scale production
- Atmospheric monitoring and selection of 2 sites, S and N
- Develop tools to operate a user facility and provide data access

CTA will operate as an observatory open to all scientists. The project is now on ESFRI, ASPERA and ASTRONET roadmaps.

#### Complex optimization problem ex : simulation of the sensitivity of various arrays



(K. Bernlohr, 2008)

## Time line

- Design Studies :
- Prototype construction :
- Array construction :
- Partial operations :
- Complete array :

up to 2009-2010 2010-2011 2012-2018 starting from 2013 2018

Should have rewarding overlaps with FERMI (2<sup>nd</sup> phase), and others large projects as AUGER, LOFAR, ALMA, JWST 2013+, E-ELT 2017+, SKA and pathfinders (2015/2019+), KM3NeT, IXO, LISA ...

# **CTA** sciences



#### Stars and galaxies



### A garanteed scientific return

in several astrophysical fields (compact objects, stellar physics, physics of ISM, galaxies) **Towards thousand VHE sources.** 

# **CTA sciences**



Cosmic Rays



Dark Matter



Space-time and relativity



Cosmology

#### **High discovery potential**

in fundamental physics (physics of cosmic accelerators, non-photonic sources, dark matter, nature of non-identified VHE sources, black holes, check of validity of Lorentz invariance, EBL and formation of cosmic structures 'stars and galaxies')

#### **CTA perspective :**

Foresee significant return on plasma physics and acceleration processes, outflows and winds, Black Hole physics, evolution of AGN and SMBH, non-thermal emission from galaxy clusters ...

Interesting synergies with any future X-ray missions : - The 2 spectral ranges can provide 2 different views of the same population of particles (leptonic scenarios with synchrotron X-rays and IC gamma-rays), or on 2 related populations (hadronic scenarios with secondary electrons) → constrain parameters - CTA avoids confusion with thermal radiation; X-rays can bring better angular resolution for imaging (and identifying)

Importance of coordinated multi-lambda monitoring, ToO ...

Acknowledgments to all CTA scientists. Special thanks to W. Hofmann, M. Teshima, M. Martinez, G. Hermann, and CTA WorkPackage conveners. Several Quantum Gravity models have predicted energy dependence of the speed of light. General parametrization:

$$c' = c \; \left(1 \pm \xi rac{E}{E_{
m P}} \pm \zeta^2 rac{E^2}{E_{
m P}^2}
ight)$$
 , with  $E_{
m P} = 1.22 imes 10^{19} \; {
m GeV}$ 



 VHE signal from PKS 2155-304 shows no energy dispersion. This yields the most constraining limits on speed of light modifications to date:

 $\xi < 17.6$  (Linear)

 $\zeta < 1.10 \ imes 10^{10}$  (Quadratic)



From Buhler and Jacholkowska, HESS, 2008)

#### (iii) Search for Dark Matter Annihilation $\gamma$ -Rays.



# Absorption of VHE gamma-rays by the IR diffuse extragalactic background



# Propagation of $\gamma$ -rays

 $\begin{array}{l} \text{dominant process for the } \gamma \text{ absorption:} \\ \gamma_{\text{VHE}}\gamma_{\text{EBL}} \rightarrow \mathbf{e^+e^-} \\ \sigma(\beta) \sim & 1.25 \cdot 10^{-25}(1-\beta^2) \cdot \left[ 2\beta(\beta^2-2) + (3-\beta^4) \ln\left(\frac{1+\beta}{1-\beta}\right) \right] \text{cm}^2 \\ \text{Heitler 1960} \\ \text{maximal for:} \quad \epsilon \simeq \frac{2m_e^2 c^4}{E} \simeq \left(\frac{500 \text{ GeV}}{E}\right) \text{eV} \end{array}$ 

For γ-rays, relevant background component is optical/infrared (EBL)
 different models for EBL: minimum density given by cosmology/star formation

Measured spectrum affected by attenuation in the EBL:





(De Lotto)

## Attenuation of $\gamma$ -rays

$$\Phi = \Phi_o e^{-\tau(E,z)}$$

#### $\gamma$ -ray horizon: $\tau(E,z) = 1$

Fazio & Stecker 1970

$$\tau(E,z) = \int_0^z dl(z) \int_{-1}^1 d\mu \; \frac{1-\mu}{2} \int_{\epsilon_{\rm thr}(E(z),\theta)}^\infty d\epsilon(z) \; n_\epsilon(\epsilon(z),z) \; \sigma(E(z),\epsilon(z),\theta)$$

where  $\mu = \cos \theta$  is the cosine of the scattering angle, l(z) = c dt(z) is the distance

$$\frac{dl}{dz} = \frac{c}{H_0} \frac{1}{(1+z)\left[(1+z)^2(\Omega_M z+1) - \Omega_\Lambda z(z+2)\right]^{\frac{1}{2}}}$$

where  $H_0$  is the Hubble constant,  $\Omega_M$  is the matter density and  $\Omega_\Lambda$  is the cosmological const.