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Main goals:
1) To consider Z ′ boson independently of the specific features and details
of a theory beyond the SM.
What can we generally expect for its mass and couplings from the
theoretical point of view?
Is it possible to derive some model-independent constraints on Z ′ cou-
plings, following from some general necessary theoretical principles?
2) To show the crucial role of the theoretical knowledge in order to
extract maximal information about Z ′ from the experimental data (the
final LEP2 data).
Waiting for Z ′ effects in some arbitrary (traditionally) chosen observable
is just a hope for a lucky accident (squandering of limited experimental
statistics). As a result, the only information on Z ′ from LEP collabora-
tions is mZ ′ > 400− 800 GeV for a limited set of popular models beyond
the SM.
Instead, we have found observables which are most sensitive to Z ′ As
a result, 1-2σ hints of the particle are found.
Probably, we will not be completely blind in searching for Z ′ at the
LHC.
3) To summarize the present experimental constraints on Z ′ parameters
from the LEP data.
This summary is a basic guide for future searching for Z ′ at the LHC.



Outline

• General requirements to a model beyond the SM containing Z ′

(renormalizability, Z ′ decoupling, the SM is a subgroup of an

unknown gauge group at high energies).

• Relations between Z ′ couplings (RG relations).

• Annihilation processes e+e− → µ+µ−, τ+τ−

• Bhabha scattering process e+e− → e+e−

• Many parameter fit of the LEP2 data on the leptonic processes

• Conclusion. Have we found traces of Z ′?



General requirements to a model beyond the SM containing Z ′

Renormalizability

• UV divergencies in radiative corrections reproduce the tree level

structure. Dominating (tree-level) Z ′ interactions are of renor-

malizable type (potential×current). Non-renormalizable type

interactions are generated by loops and suppressed.

• Any scattering amplitude is invariant under the change of nor-

malization point (satisfies the RG equation).



Decoupling

Asymptotics of Passarino-Veltman loop integrals: large logarithms

of heavy mass reproduce the UV divergencies and washed out by

the renormalization. At low energies the running of charges, masses

and wave functions are governed by light particles inside loops. All

the effects of heavy particle are suppressed by powers of heavy mass

(heavy particle decoupling) [Appelquist-Carazzone theorem].

The SM is a subgroup of an unknown gauge
group at high energies

Z ′ interactions to the SM gauge bosons at the tree level are due to

the mixing, only.



1 Parametrization of the Z ′ couplings

Let us parametrize the fermion-vector interactions introducing the effective

low-energy Lagrangian:

[Cvetic, Lynn (1987), Degrassi, Sirlin (1989); reviews, Leike (1999), Lan-

gacker (2008)]
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where summation over all SM left-handed fermion doublets, leptons and

quarks, fL = (fu)L, (fd)L, and the right-handed singlets, fR = (fu)R, (fd)R ,

is understood. Qf denotes the charge of f in positron charge units,

ỸfL = diag(Ỹfu, Ỹfd), and YfL = −1 for leptons and 1/3 for quarks.



Z ′ interactions with the scalar doublets can be parametrized in a model-

independent way as follows,
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In these formulas, g, g′, ḡ are the charges associated with the SU(2)L, U(1)Y ,

and the Z ′ gauge groups, respectively, σa are the Pauli matrices, Ỹφi =

diag(Ỹφi,1, Ỹφi,2) is the generator corresponding to the gauge group of the

Z ′ boson, and Yφi is the U(1)Y hypercharge.

The Yukawa Lagrangian can be written in the form

LY uk. = −
√

2
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2
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,

where φci = iσ2φ
∗
i is the charge conjugated scalar doublet.



Low energy parameters Ỹφi,1, Ỹφi,2, ỸL,f , ỸR,f must be fitted in experi-

ments. In most investigations they were considered as independent ones.

Are they independent under our assumptions about a theory beyond the

SM?

All of them correspond to renormalizable type interactions. But how

about the RG equation?



2 Renormalization group relations

What is RG relation?

Generally speaking, this is a correlation between low energy parameters

of interactions of a heavy new particle with known light particles of

the SM following from the requirement that full unknown yet theory

extending SM is to be renormalizable.

Strictly speaking, RG relations are the consequence of two constituencies:

1) RG equation for a scattering amplitude;
A scattering amplitude f is independent of a choice of the normalization
point (the RG equation):

Df =





∂

∂ logµ
+

∑

a

βa
∂

∂λ̂a
−

∑

X̂

γX
∂

∂ log X̂



 f = 0, (4)

where f accounts for as intermediate states either the light or heavy
virtual particles of the full theory.

2) Decoupling theorem.



The decoupling theorem describes the rearrangement of series of pertur-
bation theory including the modification of both the RG operator

D =
d

d logµ
=

∂

∂ logµ
+

∑

a

βa
∂

∂λ̂a
−

∑

X̂

γX
∂

∂ log X̂
(5)

and an amplitude at the energy threshold Λ of new physics. Here, βa- and
γX-functions correspond to all the charges λ̂a and fields and masses X̂ of
the underlying theory. As a result, no logarithms of heavy mass appear in
observable quantities.
The standard usage of the RG equation is to improve the amplitude by
solving this equation for the operator D calculated in a given order of
perturbation theory.

However, to search for heavy virtual particles,
we will use Eq. (4) in another way.

First note that for any renormalizable theory, the RG equation is just
identity, if f and D are calculated in a given order of loop expansion. In
this case Eq.(4) expresses the well known fact that the structure of the
divergent term coincides with the structure of the corresponding term in a
tree-level Lagrangian.



For example, in massless QED,
the tree-level plus one-loop one-
particle-irreducible vertex func-
tion describing scattering of elec-
tron in an external electromag-
netic field Ā, Γ = Γ(0) + Γ(1), is

If we calculate the RG operator in one-loop order
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∂

∂ logµ
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e

∂

∂e
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(1)
ψ − γ

(1)
A , (6)

where β
(1)
e , γ

(1)
A , γ

(1)
ψ are the beta-function and the anomalous dimensions

of electromagnetic and electron fields, respectively, and apply it to Γ, we
obtain

− ∂
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Then, accounting for the values of
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, γ
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12π2
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(1)
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and the factor e in Γ(0), we observe that the first and the last terms in the

r.h.s. cancel. Since µ-dependent term in Γ(1) is Γ
(1)
µ = e3

16π2 log µ2, we see that
Eq.(7) is identity in the order O(e3).



Next important point is that in a theory with different mass scales the
decoupling of heavy-loop contributions at the threshold of heavy masses,
Λ, results in the following property:

the running of all functions is regulated by the loops of light particles.

Therefore, the β and γ functions at low energies are determined by the
SM particles, only. This fact is the consequence of the decoupling theorem
[Appelquist, Carrazone (1975); Collins, Wilczek, Zee (1978)].

The decoupling results in the redefinition of parameters at the scale Λ and
removing heavy-particle loop contributions from RG equation
[Bando, et al. (1993), Gulov, Skalozub (2000)]:

λa = λ̂a + a
λ̂a

log
Λ2

µ2
+ b

λ̂a
log2 Λ2
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+ · · · , (9)
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log
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log2 Λ2
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+ · · ·

)

,

where λa and X denote the parameters of the SM. They are calculated
assuming that no heavy particles are excited inside loops.

The matching between both sets of parameters λa, X and λ̂a, X̂ is chosen
at the normalization point µ ∼ Λ,

λa|µ=Λ = λ̂a|µ=Λ, Xa|µ=Λ = X̂a|µ=Λ. (10)



The differential operator D in the RG equation is in fact unique;
the apparently different D in both theories are the same!

Note that if a theory with different mass scales is specified one can freely
replace the parameters λa, X and λ̂a, X̂ by each other [Bando, et al. (1993),
Gulov, Skalozub (2000)]

If underlying theory is not specified, the set of λ̂a, X̂ is unknown. The
low energy theory consists of the SM plus the effective Lagrangian gener-
ated by the interactions of light particles with virtual heavy particle states.
The low energy parameters λ′l. of these interactions are arbitrary num-
bers which must be constrained by experiments. By calculating the RG
operator D and the scattering amplitudes of light particles in this ”exter-
nal field” in a chosen order of loop expansion, it is possible to obtain the
model-independent correlations between λ′l.. These are just the RE relations.



3 RG relations due to Z ′

Let us derive the correlations between Ỹφi,1
, Ỹφi,2

, ỸL,f , ỸR,f appearing due to
renormalizability of the underlying theory containing Z ′.

In our case, the RG invariance of the vertex leads to the equation

D
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Z

)
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where

βa =
dλ

d logµ
, γX = −d logX

d logµ
(12)

are computed with taking into account the loops of light particles.

In what follows, we derive the RG relations following from the one-loop
consideration. In accordance with the previous sections, the one-loop RG
equation for the vertex function reads

f̄
∂Γ

(1)
fZ ′

∂ logµ
f
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+D(1)(f̄Γ
(0)
fZ ′f
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(0)
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(1)
fZ ′ are the tree-level and one-loop contributions to the ffZ ′ vertex.
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∂
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∂
∂ logX is the one-loop level part of the RG operator.



To calculate these functions, only the divergent parts of the one-loop ver-
tices are to be calculated:
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The fermion anomalous dimensions γ
(1)
X are calculated by using the dia-

grams:
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Suppose the same charge g̃ for the left-handed and right-handed fermions
(usual requirement for Z ′ boson). Then, Eq.(13) leads to algebraic equa-
tions for the parameters Ỹφi,1

, Ỹφi,2
, ỸL,f , and ỸR,f which have two sets of

solutions [Gulov, Skalozub (2000)]:

Ỹφ2,1
= Ỹφ1,1

= −Ỹφ,2
≡ −Ỹφ, (14)

ỸL,f + ỸL,f∗ = 0, ỸR,f = 0, (Chiral Z ′)

and

Ỹφ1,1
= Ỹφ2,1

= Ỹφ,2
≡ Ỹφ, (15)

ỸL,f = ỸL,f∗, ỸR,f = ỸL,f + 2T 3
f Ỹφ. (Abelian Z ′)

Here f and f ∗ are the partners of the SU(2)L fermion doublet (l∗ = νl, ν
∗ =

l, q∗u = qd and q∗d = qu), T
3
f is the third component of weak isospin.

The first of these relations describes the Z ′ boson analogous to the third
component of the SU(2)L gauge field. The couplings to the right-handed
singlet are absent.

The second relation corresponds to the Abelian Z ′. In this case the SM La-
grangian appears to be invariant with respect to the Ũ(1) group associated
with the Z ′. The last relation in Eq.(15) ensures the LY uk. Eq.(3) is to be
invariant with respect to the Ũ(1) transformations.



Introducing the Z ′ couplings to the vector and axial-vector fermion cur-
rents,

vfZ ′ =
ỸL,f + ỸR,f

2
, afZ ′ =

ỸR,f − ỸL,f
2

, (16)

the last line in Eq.(15) yields

vfZ ′ − afZ ′ = vf
∗

Z ′ − af
∗

Z ′ , afZ ′ = T 3
f Ỹφ. (17)

The couplings of the Abelian Z ′ to the axial-vector fermion current have
a universal absolute value proportional to the Z ′ coupling to the scalar
doublet.

These relations are model independent. In particular, they hold in all the
known models containing the Abelian Z ′.



f χ-ψ LR
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The most discussed models are derived from the E6 group:

E6 → SO(10)× U(1)ψ, SO(10) → SU(3)c× SU(2)L× SU(2)R ×U(1)B−L. (LR)

E6 → SO(10)×U(1)ψ → SU(5)×U(1)χ×U(1)ψ, (χ− ψ, two neutral bosons)

Z ′ = χ cosβ + ψ sin β.

If we suppose only one Z ′ boson at low energies, the ψ boson should be
much heavier than the χ field. In this case, ψ is decoupled and β → 0.

In E6 theories there are no Yukawa terms responsible for generation of
the Dirac masses of neutrinos. The Yukawa couplings of neutrinos vanish
in the RG equation, and aν are not restricted by the RG relations.



Z ′ coupling parametrization: results

The considered Lagrangian leads to the (usual) interactions between the
fermions and the Z and Z ′ mass eigenstates:

LZf̄f =
1

2
iZµf̄γ

µ
[

(vSM
fZ + γ5aSM

fZ ) cos θ0+

+(vf + γ5af) sin θ0

]

f,

LZ ′f̄f =
1

2
iZ ′

µf̄γ
µ
[

(vf + γ5af) cos θ0−
−(vSM

fZ + γ5aSM
fZ ) sin θ0

]

f, (18)

where f is an arbitrary SM fermion state; vSM
fZ , aSM

fZ are the SM couplings of
the Z-boson; θ0 is the Z-Z ′ mixing angle.

Since the Z ′ couplings enter the cross-section together with the inverse
Z ′ mass, it is convenient to introduce the dimensionless couplings, which
can be constrained by experiments:

āf =
mZ√
4πmZ ′

af , v̄f =
mZ√
4πmZ ′

vf ,



In case of the Abelian Z ′-boson, the Z–Z ′ mixing angle θ0 is determined by
the vector-scalar coupling Ỹφ as follows

θ0 =
g̃ sin θW cos θW√

4παem

m2
Z

m2
Z ′

Ỹφ + O

(

m4
Z

m4
Z ′

)

, (19)

where θW is the SM Weinberg angle, and αem is the electromagnetic fine
structure constant.

Although the mixing angle is a small quantity of order m−2
Z ′ , it contributes

to the Z-boson exchange amplitude and cannot be neglected at the LEP
energies.

The axial-vector coupling determines also the coupling to the scalar doublet
and, consequently, the mixing angle. As a result, the number of indepen-
dent couplings is significantly reduced. Note also that the absolute value
of the axial-vector Z ′ coupling is flavor-independent:

ā = āe, µ, τ, d−type quarks = −āν, u−type quarks ∼ θ0/mZ ′.

The RG relations give a possibility:

1) reduce the number of fitted parameters (vf , a);

2) taking into account the kinematics of the processes introduce ob-
servables which uniquely pick out the Z ′ signals.



4 Annihilation processes e+e− → µ+µ−, τ+τ−

We consider the processes e+e− → l+l− (l = µ, τ) with the non-polarized
initial- and final-state fermions. In order to introduce the observable which
selects the signal of the Abelian Z ′ boson we compute the differential cross-
sections of the processes up to the one-loop level.

The lower-order diagrams describe the neutral vector boson exchange in
the s-channel (e+e− → V ∗ → l+l−, V = A,Z, Z ′).

V

e−

e+

f
−

f

In the lower order in m−2
Z ′ the Z ′ contributions to the differential cross-

section of the process e+e− → l+l− are expressed in terms of four-fermion
contact couplings, only.

If one takes into consideration the higher-order corrections in m−2
Z ′ , it be-

comes possible to estimate separately the Z ′-induced contact couplings and
the Z ′ mass [Hewett, Rizzo (1989)]. In the present analysis we keep the
terms of order O(m−4

Z ′ ) to fit both of these parameters.



We introduce the observable (generalized forward-backward cross-section)

σl(z) =

∫ 1

z

dσl
d cos θ

d cos θ−
∫ z

−1

dσl
d cos θ

d cos θ,

θ

12

∆σl(z
∗) ∼ −ā2, z∗ = 0.38 at

√
s = 200 GeV.

We present the final result of the analysis carried out. The fits were per-
formed which assumed several data sets, including the µµ, ττ , and the
complete µµ and ττ data, respectively. The results are presented in Table.



The dimensionless axial-vector contact coupling ā2 with the 68% confidence-level un-
certainty, the probability of the Z ′ signal, P , and the value of m2

Z/m
2
Z ′ as a result of the

fit of the observable recalculated from the total cross-sections and the forward-backward
asymmetries.

Data set ā2 P m2
Z/m

2
Z ′

µµ 0.0000366+0.0000489
−0.0000486 0.77 0.009± 0.278

ττ −0.0000266+0.0000643
−0.0000639 0.34 −0.001± 0.501

µµ and ττ 0.0000133+0.0000389
−0.0000387 0.63 0.017± 0.609

As it is seen, the more precise µµ data demonstrate the hint of about 1σ
level. It corresponds to the Abelian Z ′-boson with the mass of order 1.2–
1.5TeV if one assumes the value of α̃ = g̃2/4π to be in the interval 0.01–0.02.



5 Bhabha process e+e− → e+e−

Differential cross-section
In our analysis, as the SM values of the cross-sections we use the quanti-
ties calculated by the LEP2 collaborations. The deviation from the SM is
computed in the improved Born approximation.

The deviation from the SM of the differential cross-section for the process
e+e− → e+e− can be expressed through quadratic combinations of couplings
a, ve,

dσ

dz
− dσSM

dz
= f ee1 (z)

a2

m2
Z ′

+ f ee2 (z)
v2
e

m2
Z ′

+ f ee3 (z)
ave
m2
Z ′

, (20)

where the factors are known func-
tions of the center-of-mass energy
and the cosine of the electron scat-
tering angle z plotted in Fig.
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It is convenient to introduce the dimensionless couplings

āf =
mZ√
4πmZ ′

af , v̄f =
mZ√
4πmZ ′

vf , (21)

which can be constrained by experiments.

The cross-sections in Eq. (20) account for the relations (15) through the
functions f1(z), f3(z).

One-parameter fit
The factor f ee2 (z) = Fv(

√
s, z) is positive monotonic function of z. Such a

property allows one to choose Fv(
√
s, z) as a normalization factor for the

differential cross section. Then the normalized deviation reads

dσ̃

dz
= F−1

v (
√
s, z)∆

dσ

dz
=

= v̄2 + Fa(
√
s, z)ā2 + Fav(

√
s, z)āv̄ + . . . , (22)

and the normalized factors are finite at z → 1. Each of them in a special
way influences the differential cross-section.



1. The factor at v̄2 is just the
unity. Hence, the four-
fermion contact coupling be-
tween vector currents, v̄2, de-
termines the level of the devi-
ation from the SM value.

2. The factor at ā2 depends on
the scattering angle in a non-
trivial way. It allows to rec-
ognize the Abelian Z ′ boson,
if the experimental accuracy is
sufficient.

3. The factor at āv̄ results in
small corrections.

z
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Thus, effectively, the obtained normalized differential cross-section is a two-
parametric function.



Observable to pick out v̄2. After normalization the factor at v̄2 is 1.
The factor at ā2 is a sign-varying function which is small over the backward
scattering angles for

√
s ∼ 200 GeV. So, to measure v̄2 the normalized devia-

tion of the differential cross-section has to be integrated over the backward
angles:

σV =

∫ z0+∆z

z0

(dσ̃/dz)dz,

where at each energy the most effective interval [z0, z0 + ∆z] is determined
by the following requirements:

1. The relative contribution of the coupling v̄2 is maximal. Equivalently,
the contribution of the factor at ā2 is suppressed.

2. The length ∆z of the interval is maximal. This condition ensures that
the largest number of bins is taken into consideration.
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The values of the Z ′ coupling to the electron vector current together with
their 1σ uncertainties are [Gulov, Skalozub (Phys. Rev. D, 2007)]:

ALEPH : v̄2
e = −0.11 ± 6.53 × 10−4

DELPHI : v̄2
e = 1.60 ± 1.46 × 10−4

L3 : v̄2
e = 5.42 ± 3.72 × 10−4

OPAL : v̄2
e = 2.42 ± 1.27 × 10−4

Combined : v̄2
e = 2.24 ± 0.92 × 10−4.

As one can see, the most precise data of DELPHI and OPAL collaborations
are resulted in the Abelian Z ′ hints at 1 and 2σ CL, correspondingly. The
combined value shows the 2σ hint, which corresponds to 0.006 ≤ |v̄e| ≤ 0.020.

Many-parameter fits
Now we fulfill the many parametric fits accounting for the total amount of
the LEP2 experiment data.

As the basic observable to fit the LEP2 experiment data on the Bhabha
process we propose the final differential cross-sections measured by the
ALEPH (130-183 GeV), DELPHI (189-207 GeV), L3 (183-189 GeV), and

OPAL (130-207 GeV) collaborations,
dσBhabha

dz
|z=zi,

√
s=

√
si

, where i runs over

the bins at various center-of-mass energies
√
s (299 bins).



As the observables for e+e− → µ+µ−, τ+τ− processes, we consider the total

cross-section σ`
+`−

T |√s=√
si

and the forward-backward asymmetry A`+`−

FB |√s=√
si

where i runs over 12 center-of-mass energies
√
s from 130 to 207 GeV. We

consider the combined LEP2 data [Electroweak Working Group (2006)] for
these observables (24 data entries for each process). These data are more
precise as the corresponding differential cross-sections.

The data are analyzed by means of the χ2 fit. Denoting the observables by
σi, one can construct the χ2-function,

χ2(ā, v̄e, v̄µ, v̄τ) =
∑

i

[

σex
i − σth,SM

i − σth,Z ′

i (ā, v̄e, v̄µ, v̄τ)

δσi

]2

, (23)

where σex and δσ are the experimental values and the uncertainties of the
observables, σth,SM are the SM values of the observables, and σth,Z ′

are the
deviations from the SM value due to the Z ′ boson. The sum in Eq. (23)
refers to either the data for one specific process or the combined data for
several processes.



The 95% CL areas in the (ā, v̄e) plane
for the separate processes are plot-
ted in Fig. The Bhabha process
constrains both the axial-vector and
vector couplings. As for the e+e− →
µ+µ− and e+e− → τ+τ− processes, the
axial-vector coupling is significantly
constrained, only.
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The projection of the 95% CL area onto
the (ā, v̄e) plane for the combination of the
Bhabha, e+e− → µ+µ−, and e+e− → τ+τ−

processes.

Let us compare the obtained results with the one-parameter fits.
As one can see, the most precise data of DELPHI and OPAL collabora-

tions are resulted in the Abelian Z ′ hints at one and two standard deviation
level, correspondingly. The combined value shows the 2σ hint, which cor-
responds to 0.006 ≤ |v̄e| ≤ 0.020.



Our one-parameter observable accounts mainly for the backward bins.
This is in accordance with the kinematic features of the process: the back-
ward bins depend mainly on the vector coupling v̄2

e, whereas the contribu-
tions of other couplings are kinematically suppressed (see Fig. after Eq.
21).

We perform the many-parameter fit with the 113 backward bins (z ≤
0), only. The χ2 minimum, χ2

min = 93.0, is found in the non-zero point
|ā| = 0.0005, v̄e = 0.015. This value of the Z ′ coupling v̄e is in an excellent
agreement with the mean value obtained in the one-parameter fit.

The 68% CA in the (ā, v̄e) plane
is plotted in Fig. The zero point
ā = v̄e = 0 (the absence of the Z ′

boson) corresponds to χ2 = 97.7. It
is covered by the CA with 1.3σ CL.
Thus, the backward bins show the
1.3σ hint of the Abelian Z ′ boson in
the many-parameter fit. -0.02 0 0.02
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The summary of the fits of the LEP data for the dimensionless contact
couplings.

Data v̄2
e ā2

LEP1
e−e+, 68% CL - (1.25± 1.25)× 10−5

LEP2, one-parameter fits
e−e+, 68% CL (2.24 ± 0.92)× 10−4 -
µµ, 68% CL - (3.66+4.89

−4.86) × 10−5

µµ,ττ , 68% CL - (1.33+3.89
−3.87) × 10−5

LEP2, many-parameter fits
e−e+, µµ, ττ , 95% CL ≤ 1.69× 10−4 ≤ 3.61 × 10−4

e−e+ backward, 68% CL (2.25+1.79
−2.07) × 10−4 ≤ 9.49 × 10−4



Let us present the results of fits of the Z ′ parameters in terms of the
standard notations [Leike (1998), Langacker (2008)]. The Lagrangian reads

LZf̄f =
1

2
Zµf̄γ

µ
[

(vSM
f + ∆V

f ) − γ5(aSM
f + ∆A

f )
]

f,

LZ ′f̄f =
1

2
Z ′
µf̄γ

µ
[

(v′f − γ5a′f)
]

f, (24)

with the SM values of the Z couplings

vSM
f =

e
(

T3f − 2Qf sin2 θW
)

sin θW cos θW
, aSM

f =
e T3f

sin θW cos θW
,

where e is the positron charge, Qf is the fermion charge in the units of
e, T3f = 1/2 for the neutrinos and u-type quarks, and T3f = −1/2 for the
charged leptons and d-type quarks.



The summary of the fits of the LEP data for the maximum likelihood
values of the Z ′ couplings to the SM fermions and of the Z−Z ′ mixing angle
θ0.

M = mZ′

1 TeV denotes the unknown value of the Z ′ mass in TeV units.

Data |θ0|, ×10−3 |v′e|, ×10−1 |a′f |, ×10−1 ∆A
e , ×10−3

LEP1
e−e+ 3.17M−1 - 1.38M 0.437

LEP2, one-parameter fits
e−e+ - 5.83M - -
µ−µ+ 5.42M−1 - 2.36M 1.278
µ−µ+, τ−τ+ 3.27M−1 - 1.42M 0.464

LEP2, many-parameter fits
e−e+, z < 0 - 5.84M - -



The summary of the fits of the LEP data for the confidence intervals
for the Z ′ couplings to the SM fermions and for the Z −Z ′ mixing angle θ0.

M = mZ′

1 TeV denotes the unknown value of the Z ′ mass in TeV units.

Data CL |θ0|, ×10−3 |v′e|, ×10−1 |a′f |, ×10−1 ∆A
e , ×10−3

LEP1
e−e+ 68% (0, 4.48)M−1 - (0, 1.95)M (0, 0.873)

LEP2, one-parameter fits
e−e+ 95% - (2.46, 7.87)M - -
µ−µ+ 95% (0, 10.39)M−1 - (0, 4.52)M (0, 4.694)
µ−µ+,
τ−τ+ 95% (0, 8.64)M−1 - (0, 3.75)M (0, 3.244)

LEP2, many-parameter fits
e−e+,
µ−µ+, 95% (0, 17.03)M−1 (0, 5.06)M (0, 7.40)M (0, 12.607)
τ−τ+

e−e+,
z < 0 68% (0, 27.61)M−1 (1.68, 7.83)M (0, 12.00)M (0, 33.1288)



2 4 6
0

2

4

6

8

θ
0
, 10 3

m
Z

,TeV

Excluded at 95%,

many-parameter fit,

ll

2 4 6
0

2

4

6

8

θ
0
, 10 3

m
Z

,TeV

Excluded at 95%,

many-parameter fit,

ll

GRAY: the values excluded at 95% CL by the many-parameter fit of e+e− →
l+l−.

PINK: fits of the one-parameter observables for e+e− → µ+µ−, τ+τ− (with
the maximum likelihood value as the DASHED RED line)

YELLOW: fits of the one-parameter observables for e+e− → µ+µ− (with the
maximum likelihood value as the SOLID RED line)

DOTTED BLUE: the maximum likelihood values from the LEP1 data.
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the maximum likelihood value as the DASHED RED line)

YELLOW: fits of the one-parameter observables for e+e− → µ+µ− (with the
maximum likelihood value as the SOLID RED line)

DOTTED BLUE: the maximum likelihood values from the LEP1 data.



2 4 6
0

1

2

ve

m
Z

,TeV

Excluded

at 95%

ee at 95% C.L.

2 4 6
0

1

2

ve

m
Z

,TeV

Excluded

at 95%

ee at 68% C.L.
backward bins

GRAY: the values excluded at 95% CL by the many-parameter fit of e+e− →
l+l−.

BLUE: fits of the one-parameter observables for e+e− → e+e− (with the
maximum likelihood value as the DASHED LINE).

GREEN: The maximum likelihood values (DASHED LINE) and the 1σ CL
area for the many-parameter fit of backward bins of e+e− → e+e−.



Conclusion

LEP collaborations have obtained model dependent low bounds
on the Z ′ mass. It varies from 400 to 800 GeV at 95 per cent CL
dependently on the Z ′ model. A possibility to select Z ′ signal in
specific scattering processes was not considered.

Our analysis of the leptonic processes based on the same data set
and the same SM values of the cross-sections showed that the exis-
tence of Z ′ boson with the mass of order 1 - 1.2 TeV is not excluded
at the 1 - 2 σ CL, being compatible with the LEP2 reports.

The estimated Z ′ parameters v̄2
e = 2.24 ± 0.92 × 10−4 and ā2 = 1.3 ±

3.89 × 10−5 at 68 per sent CL derived in different methods are in
good agreement with each other.

In our analysis, the RG relations play a crucial role in treating
experimental data. They served to reduce the number of unknown
parameters and extract a maximal information about the Z ′ from
the experimental data set. If the RG relations are not taken into
account no hints of Z ′ will be found.

We believe that the RG relations will be also important in searches
for the Z ′ at LHC.


