Sigma models for Lorentz group and superluminal propagation in 2d

Sergey Sibiryakov (EPFL & INR RAS)

in collaboration with Sergei Dubovsky

JHEP 0812:092,2008 [arXiv: 0806.1534], work in progress

Is Lorentz symmetry exact?

- Explore departures from LS
- Explicit violation of LS incompatible with general relativity
- Consider spontaneous LS breaking: the action is Lorentz invariant (and generally covariant), but the vacuum is not

Sigma-model $SO(3,1)/SO(3) \implies V_{\mu}V^{\mu} = M^2$ \int preserve spatial isotropy

Einstein-aether

Sergey Sibiryakov

T. Jacobson, D. Mattingly (2001)

$$S = \int d^4x \Big[-\alpha_1 \partial_\mu V^\nu \partial^\mu V_\nu - \alpha_2 (\partial_\mu V^\mu)^2 -\alpha_3 \epsilon^{\mu\nu\lambda\rho} \partial_\mu V_\nu \partial_\lambda V_\rho - \alpha_4 V^\mu \partial_\mu V^\nu V^\lambda \partial_\lambda V_\nu +\lambda (V_\mu V^\mu - M^2) \Big]$$

Requires UV completion: $\Lambda \leq M$

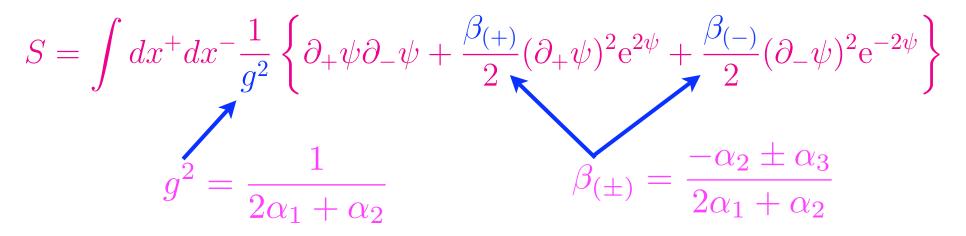
2d toy-models may be useful: better quantum properties

C. Eling, T. Jacobson (2006)

4th Sakharov Conference, Moscow

Work in light-cone coordinates $x^{\pm} = \frac{1}{\sqrt{2}}(t \pm x)$

Introduce "rapidity" field: $V^{\pm} = \frac{1}{\sqrt{2}} e^{\pm \psi}$

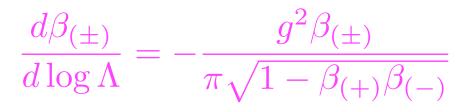


• Lorentz symmetry is realized non-linearly:

 $\psi(x^+, x^-) \mapsto \psi(\mathrm{e}^{\gamma} x^+, \mathrm{e}^{-\gamma} x^-) + \gamma$

Renormalizable by power-counting

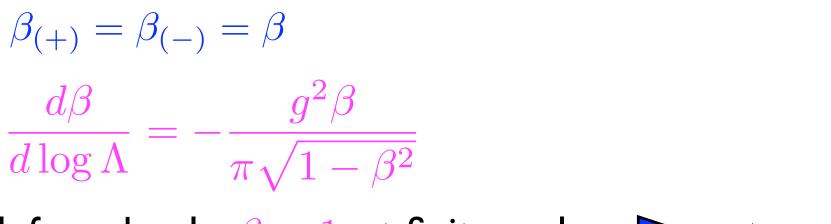
One-loop RG flow



- In UV: $\beta_{(\pm)} \to 0$ \longrightarrow theory flows to the free Lorentz invariant limit
- In IR: three cases

 $\beta_{(+)},\beta_{(-)}:$ ++, +0, +-

One-loop RG flow

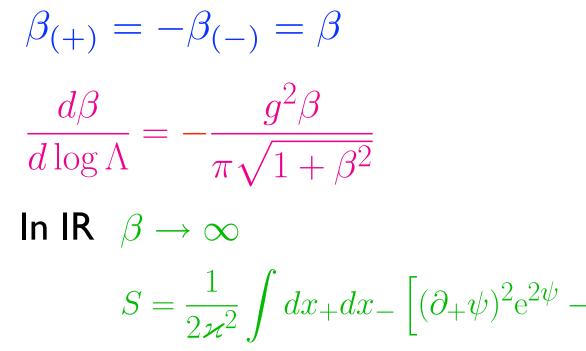


Infrared pole $\beta = 1$ at finite scale \rightarrow strong coupling in IR

 $\beta_{(-)} = 0$

No physical running: change of $\beta~$ is compensated by the shift of ψ

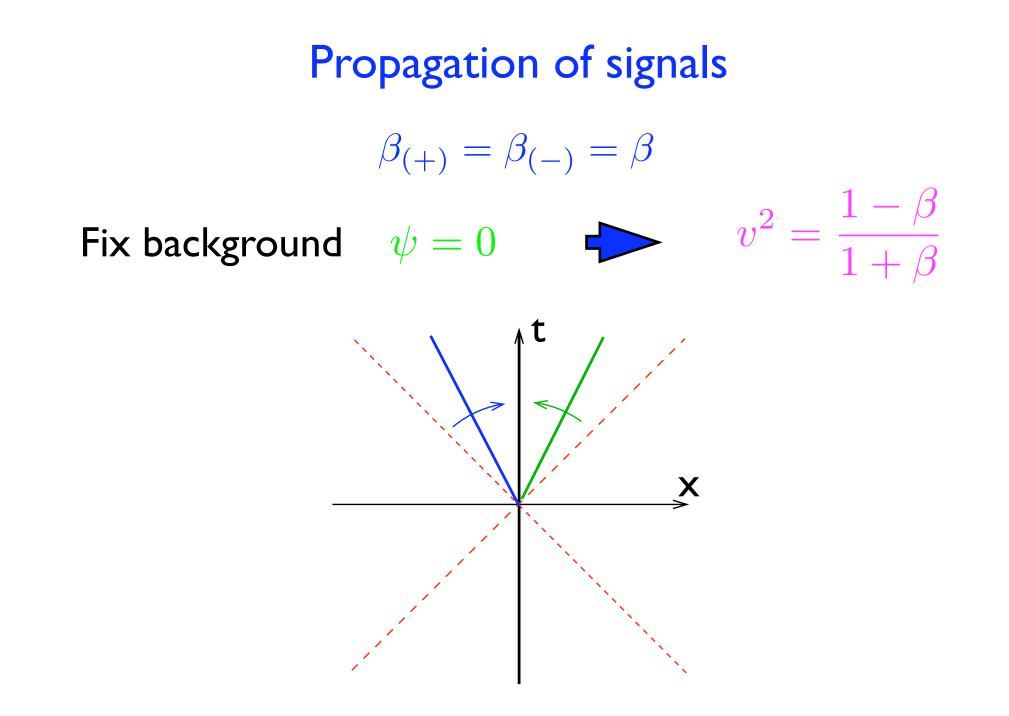
One-loop running



 $S = \frac{1}{2\varkappa^2} \int dx_+ dx_- \left[(\partial_+ \psi)^2 e^{2\psi} - (\partial_- \psi)^2 e^{-2\psi} \right]$ $\varkappa^2 = \frac{g^2}{\beta}$ $\frac{d\varkappa}{d\log\Lambda} = \frac{\varkappa^3}{2\pi}$

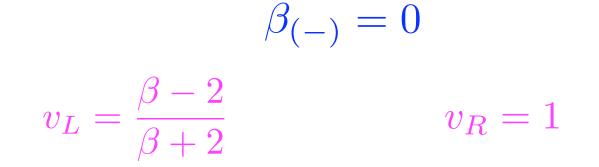
theory flows to a weakly coupled point

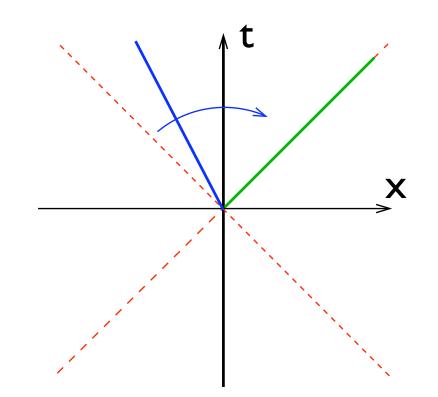
Sergey Sibiryakov



Sergey Sibiryakov

Propagation of signals





Sergey Sibiryakov

Propagation of signals $\beta_{(+)} = -\beta_{(-)} = \beta$ $v_R = \beta + \sqrt{1 + \beta^2}$ $v_L = -\beta + \sqrt{1 + \beta^2}$ Х

The right-moving mode is superluminal

Sergey Sibiryakov

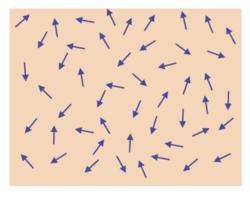
Restoration of Lorentz invariance

No spontaneous breaking of continuous symmetries in 2d

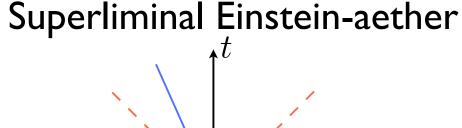
N.D. Mermin, H. Wagner (1966) S. Coleman (1973)

Average over classical vacua.

Example: 2d ferromagnet

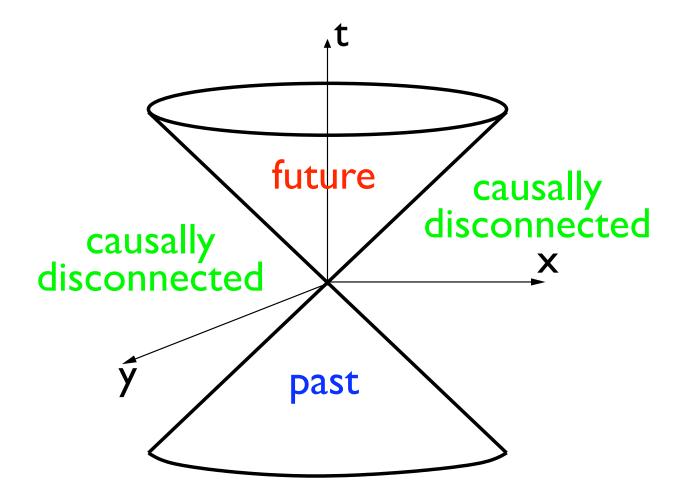


- - -

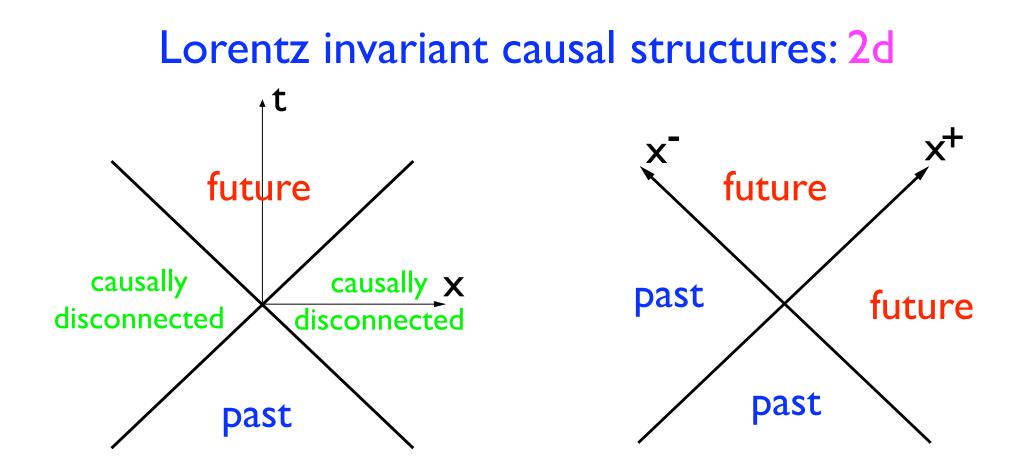


Instead of spontaneous LS breaking a Lorentz invariant model with superluminal propagation

Lorentz invariant causal structure: d > 2



Sergey Sibiryakov



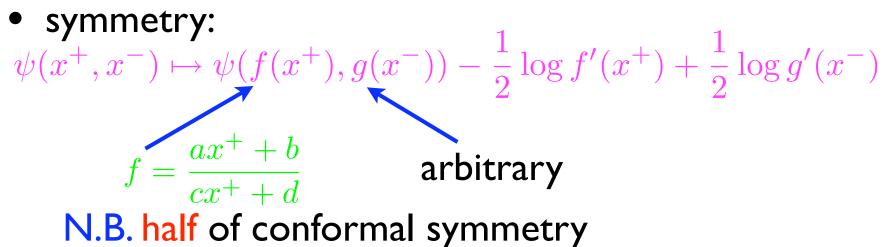
Positive-definite Hamiltonian for evolution along x^+

$$H_{x^+} = \int dx^- \frac{\beta}{2g^2} \left[(\partial_+ \psi)^2 \mathrm{e}^{2\psi} + (\partial_- \psi)^2 \mathrm{e}^{-2\psi} \right]$$

Sergey Sibiryakov

Hints at integrability:
$$\beta_{(-)} = 0$$

$$S = \int dx^+ dx^- \frac{1}{g^2} \left[\partial_+ \psi \partial_- \psi + \frac{\beta}{2} (\partial_+ \psi)^2 e^{2\psi} \right]$$

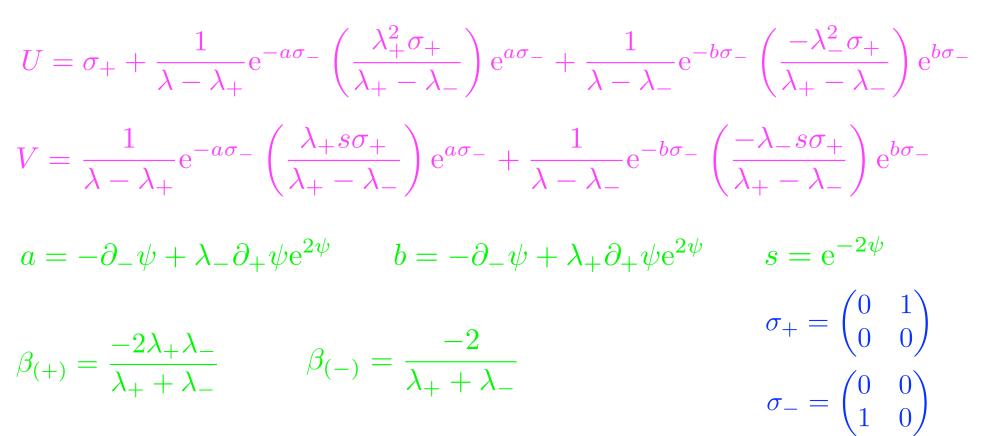


- Infinite number of integrals of motion $\partial_+ q = 0$ $q = (\partial_{-}\psi)^{2} - \partial_{-}^{2}\psi - \frac{\beta}{2}\partial_{-}\partial_{+}\psi e^{2\psi}$
- General classical solution
- Renormalizable by normal ordering

Hints at integrability: general case Equation of motion: $2\partial_+\partial_-\psi + \beta_{(+)}(\partial_+^2\psi + (\partial_+\psi)^2)e^{2\psi} + \beta_{(-)}(\partial_-^2\psi - (\partial_-\psi)^2)e^{-2\psi} = 0$

equivalent to zero-curvature condition:

 $[\partial_+ + V, \partial_- + U] = 0$



4th Sakharov Conference, Moscow

Coupling to gravity

Start from the Einstein-aether form of the action

$$S_{gr} = -\frac{1}{2\pi\kappa} \int d^2x \sqrt{-g} \left(R + \mu^2\right) + S_{EA}(g_{\mu\nu}, V_{\mu})$$

Fix conformal gauge Einstein-aether sector contributes to the Liouville action as a single scalar boson

+ explicit coupling to the Liouville field

 $S = \tilde{S}_{EA}(\phi, \psi) + S_L(\phi) + \dots$

$$\tilde{S}_{EA} = \int d^2x \left\{ \frac{1}{g^2} \partial_+ \psi \partial_- (\psi - \phi) + \frac{\beta_{(+)}}{2g^2} e^{2\psi - \phi} (\partial_+ \psi)^2 + \frac{\beta_{(-)}}{2g^2} e^{\phi - 2\psi} \left(\partial_- (\psi - \phi) \right)^2 \right\}$$

Prospects

• Toy models for issues related to causality Weak coupling to ordinary (massive) fields $S_{\chi} = \int d^2x \left(\partial_+ \chi \partial_- \chi - \frac{m^2 \chi^2}{2} + \frac{\gamma_{(+)}}{2} (\partial_+ \chi)^2 e^{2\psi} + \frac{\gamma_{(-)}}{2} (\partial_- \chi)^2 e^{-2\psi} \right)$

 Toy models for extraction of information from black holes

Prospects: more ambitious

Consider EA as (a part of) world-sheet action of a string Possible action:

$$S = \int d^2x \left\{ \frac{1}{g^2} \left[\partial_+ \psi \partial_- (\psi - \phi) - \partial_+ X^i \partial_- X^i \right] + \frac{\beta}{2g^2} e^{2\psi - \phi} \left[(\partial_+ \psi)^2 + (\partial_+ X^i)^2 \right] \right\} + S_L(\phi) + \dots$$

The resulting theory will be UV complete, contain gravity and possess unusual properties: a-causality ? non-locality ?

At stake: holidays at α Centauri

Sergey Sibiryakov