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LIST OF THE BASIC RESULTS:

e Non-linear operatorial superalgebras of half-integer and algebras of integer HS fields
in AdS;-spaces generated by the constraints {o;} in auxiliary Fock spaces, which are
equivalent to conditions of (A)dS(d) group irreps subject to Young tableaux with 2

rows are derived: /

e Representations of (super)algebras A’(Y(;(;i}Ade) of additional parts {0/} in or-
der to convert (super)algebras A(Y(S())i}Ade) — into ones with set of only 1st-class
constraints, AC(Y({Z?)],}ACZSCZ): O; = oy + 0|, with help of Verma modules construc-

tions and its Fock space realizations are found:

e Exact nilpotent BFV-BRST operator: |, = C'O; + Q5 + (5|, for non-linear al-
gebra A (Y (2), AdS;) with non-vanishing terms Q3 in 3rd power in C! due to
nontrivial Jacobi identity for A, (Y (2), AdS,) is constructed:

e A gauge-invariant unconstrained Lagrangian formulation (LF) for integer HS fields
subject to Y'T'(2) in AdS(d) space is developed:;
e The computer program to verify within Symbolic Computations the correctness of

Fock space realization of Verma module for A'(Y'(2), AdSy) is suggested.



Plan of the talk:
1. Motivations and setting of the problem:

a) Properly HS formulations on constant curvature spaces, String field theory, BRST app-
proach for HS fields ;

b) Construction of an auxiliary representations for non-linear (super)algebras as the conversion

procedure ;

c) Non-linear operator superalgebras and BFV-BRST operators;
2. Scheme of the solution the problem:

a) Derivation of massive (half-)integer HS symmetry (super)algebra (A)A,(Y(2), AdSy) in
AdS,; space subject to Young tableaux with 2 rows ;

b) Additive conversion of (super)algebra A,,,q(Y (2), AdS;) with 1st and 2nd class con-

straints into one A(Y'(2), AdS;) with only 1-class constraints system;

c) Verma module for (super)algebra A'(Y (2), AdS,) of additional parts to constraints and

its oscillator realization in Fock space H';
d) (Super)algebra of converted constraints, exact BFV-BRST operator;
e) Unconstrained Lagrangian formulation;

f) New computer program to verify the validity of the oscillator Verma module realization.

3. Summary of the results; Outlook.



1. Motivations and setting of the problem:
Problems of HS field theory (starting to study by M. Fierz, W. Pauli; L. Singh, C. Hagen; C. Fronsdal)
both for totally-symmetric (£ = 1 row in Young tableau (YT)), and for mixed-symmetry (& > 1) half-

integer s = (ny+ 1/2,no+1/2,...) and integer s = (11, 1o, ...) (massive and massless:m = () HS fields:

/’1‘1 //L2 . . . . . . . . . /’Lnl

= Y(Sl, 59, ) .

CDMl--‘Mnl%Vl--VnQ;--- V1|9 . . S I I A yn2

in view of connection to . (E. Witten (1986); C. Thorn(1989)) through

special tensionless limit for intercept (o’ — 0): (A. Sagnotti, M. Tsulaia, (2004)).

= SFT =Y infinite set of HS fields in superstring spectrum

From cosmological research = an exceptional role of (Anti-)de-Sitter [(A)dS] space for consistent prop-
agation of free (J. Fang, C. Fronsdal (1980); M. Vasiliev (1988)) and interacting (E. Fradkin, M. Vasiliev
(1987, 2001), R. Metsaev (2005)) HS fields due to:

e natural dimensional parameter — square inverse radius r of d-dimensional (A)dS space,

e connection of HS fields on AdS(d) space to AdS/CF'T correspondence between the conformal A/ = 4

SYM theory and superstring theory on AdS5 X S5 Ramond-Ramond background, justifying the study

d—1
of dynamics of fermionic and bosonic HS fields on AdS(d) subject to Y (s1,s9): k < [T] = 2.



Whereas the Lagrangian formulation (LF) for free bosonic and fermionic HS fields subject to Y'(sq, s9)
within frame-like formulation (M. Vasiliev) was found (Yu. Zinoviev, Arxiv:0809.3287, Arxiv:0904.0549),
the same problem in metric-like formulation WAS NOT SOLVED.

Within stringy-inspired BRST-BFV approach (S. Ouvry, J. Stern, A. Bengtsson, A. Pashnev, M. Tsu-
laia, J. Buchbinder, V. Krykhtin, A. Reshetnyak) this problem meets SIGNIFICANT OBSTACLES in

constructing:

1) Verma module; 2) BFV-BRST operator

for non-linear (super)algebra underlying LF for (fermionic) bosonic HS fields on AdS(d).
—> Indeed, the standard BFV-BRST prescription to quantize in Hamiltonian formalism an initial degen-

erate field theory given in LF is described by the sequence:

degenerate LF| pirac-pergmann | t—local HF (Hy,0,)(1) conversion . |converted HF(H, O,)(t)
— Batalin, Tyutin

(S(q"),dq") {0a, 00} = fS,(q,P)oc + Ay {04, 00} = F5(q,p, )0,

BFV method | BFV-BRST charge Q(t),Q” =0 quantizat.i?n (W) € Hpnys - QV) = 0,gh([¥)) =0
— Kugo, 0Ojima
Q(t) = C*O, + 3C*C*FS P, + more gauge transfs:|V') = |U) + Q|A)




—> BFV-BRST approach in applying to HS fields solves INVERSE PROBLEM: RECONSTRUCTION
OF THE UNKNOWN LAGRANGIAN FORMULATION FOR HS FIELD WITH GIVEN MASS, SPIN BY

MEANS OF HAMILTONIAN OBJECTS:

Irreps conditions|gr|(Super)algebra{os(z)} : H | conversion Or=or+0d, - HQH

— Burdik, Pashnev
1ISO(1,d-1), SO(2,d-1) lor,05} = fE(0)or + Awlgo) 01,0,} = FE(o,0)Ok
Q' =Q+ (g0o+h+more)Cy+...: Q* =0
PV, | BRST operator for {O;}:Q'(x)| r mass-shell : QW) = 0,gh(|V)) =0
Henneaux —

Q' =C'O; + %C]CJFEPK -+ more

spin:(go + more)(|W), |A),...) = —h(|V), |A), ...)
gauge transfs:d|V) = Q|A),d|A) = Q|AY), ...

() is BFV-BRST operator for only 1st class constraints {O,} C {O;} without invertible operator g;.

On the stages of conversion and BFV-BRST operator construction the auxiliary Stuckelberg and gauge

fields are automatically introduced to obtain gauge-invariant LF for basic field from initial non-Lagrangian

equations defining the irreducible representations of Poincare or AdS groups;

— IN TRANSITION FROM Y'(S5;) TO Y (51, S9) THE REALIZATION:

1. of the for (super)algebra A'(Y(2), AdS;) of the additional parts o) meets the obstacles
earlier not arisen IN VERMA MODULE CONSTRUCTION for Lie (super)algebra in case of Poincare

group and for non-linear (super)algebra for AdS-group with Y'(s1) (C. Burdik, O. Navratil, A. Pashnev

(2002); P. Moshin, A. Reshetnyak (2007) A. Kuleshov, A. Reshetnyak (2009));
2. of the (BRST OPERATOR) for operator (super)algebra A.(Y (2), AdS,) of converted O;

is IMPOSSIBLLE, without explicit resolution of JACOBI IDENTITIES for Oy.




THE PURPOSE OF REPORT IS TO PRESENT THE RESULTS:

1. on Verma Modules construction for non-linear (super)algebras underlying (fermionic)

bosonic HS fields on (A)dS, space subject to YT(s1, s2);

2. of BFV-BRST operators constructions and its applications to gauge-invariant uncon-

strained Lagrangian Formulation for free HS field ;

3. on the application of new computer program to verify the correctness of the Verma

module realization in auxiliary Fock space as the formal power series in oscillator

variables for the superalgebras A'(Y (2), AdS,).



2. Scheme of the solution the problem:

Let us consider the scheme of obtaining the Lagrangian formulation
2a) Derivation of massive (half-)integer HS symmetry (super)algebra (A)A,(Y (2), AdSy)

in AdS, space subject to Young tableaux with 2 rows

The massive of generalized spin s = (n;+ 5, 12+ 1) AdS group irrep D(Ej(m), s) are realized in the space

of mixed-symmetry spin-tensor fields (1) (2 () [Ef"™ U= /r(ny — 2+ ki +d)| , with suppressed

Dirac index, subject to YT being specific for 2 various cases

1 1 . . 0 . o . . o . 1 1 1 . . 0 . . . . . . 1
M2 unl PR kl _ 2, M1 U’nl

20,,2 2 20,,2 2
M1M2. . . . . . . . . unl M1M2. . . . . . . ung

which satisfy to mass-shell Dirac equation, gamma-traceless equations for each type of the indices and

H/ﬁ:l

to the mixed-symmetry equation (with conventional ~-matrix {%, %} = 2g,,,(7))

S . d—2—-2k
[Z’}// v’u N T2<n1 T 22 : l) B ](I)</lr )nl:(/’Z)nQ <.f17> - O' (1)
3 N
llq)/‘{/‘g :“nl (1 )7)2 <T> - /7[ lq)(ul)”l,/1%/1%.../1%2 ([I?) _ Oa ) (2)
(I){(:ul)nl7:“%}:“%"'#72},2 (:C) — U ? (3)

We want to find the LF for given HS field on more wider configuration space M:

Snt M =P (g Ym0y - T — R



Following to SFT we introduce an auxiliary Fock space H for 7,5 = 1,2, with bosonic creation and

annihilation operators
[CL Clgﬂ nab517,<:> [ U CL}+] g;w%, for CL(JF)”(:U) _ 62‘(:6)@(*)“,

with vielbein e/ (x) satisfying to standard relation (of compatibility of the metric with connection [metric

)\ .
one [}, and spin one w,";] )

/ A b

v

An arbitrary "string-like” vector |®) € H

ny

D) = Z ZCD 1)sg (Vg (T) ya " ... alﬂt”la;yl... a;w@\m

n1=0n9=0

o ni
a +an b +bn
— Z Z D (4, (B, (T) a; ™. oa; Mayt. L a, ?]0), (4)

n1=0no=0
permits to realize equivalently the conditions (1 - 3) as the constraints on |®).

2
To this end, it is introduced the covariant derivative D, in H: D, = 0, — wzb (Z a;ap — %’V{Wb])
i=1

o

+Hn 1% +Vn
D) = 3 (9,00, o, @™l al " 0).

n1>n9=0
Then the constraints

to|®) = t'|®) = t|P) = 0| <=irreps (1)- (3) for each ni,ny (5)




and considered as the primary ones in terms of the operators [0 = (2,3) < k; = (1,2)]

y - ! i i
to=1y"D,, —m — r2(gs — f3), t'=~"a,, (6)
| .
14+ 2
t = a,lfa - gy = —a”“az + 1

Because of the fermionic nature of Eqs.(1), (2) with respect to the standard Grassmann
parity, and due to bosonic nature of £, ', we introduce equivalent representation for
constraints by transition to (d + 1) Grassmann-odd “gamma-matrix-like objects”:

v — (3", 7) with nondegenerate odd Lorentz-scalar supermatrix 7 : v/ — 4"

= A -2 . L AlA (AR A —
U5 =29 0N =0, =10 A =a1e( ) =1
The above relations on |®) in terms of -odd constraints
7 S X g l N
ty=—1y"D, + 7 (m +1r2(gy — 5)) : t'=v"a,,
takes the form #|®) = t'|d) = 0.

Hermiticity of BRST operator to be constructed through the total set of constraints will

be determined through an odd scalar product:

~ ) Pk o oL
(U] D) :/ddx\/\g\ > <O\a’11...a1k1a21...anQ\P?‘p)kl?@kQ(:ﬁ)x

ni,k1,n2,ke=0

- . +n +n
XA0P ), )y @)y g g ay 2 0). (7)



THEN THE REQUIREMENTS (being by the part of Dirac-Bergmann algorithm for formal gauge theory

with vanishing Hamiltonian): {o;}" C {o;} and [07,0,} € {0/}

generate an COMMUTATOR SUPERALGEBRA A(Y'(2), AdS;) with central charge | = (m — &%) ;

to modified o

ty = —1y"D,+ i(m + 7'§<g(l) — /3)) , gh = —aifai“ + g, (8)
t = ﬁ“ait : ' = ﬁ“ai:r : (9)
t = aifam, T = affal“, (10)
I' = —ia, D", [ = —ia, D", (11)
[V = %awai, [Vt = %aiwaﬁ, (12)

D2 to modified 0

AL 9

2
ly =7 (D, Dy — T3, D) —r( (D b+ ¢7#) + 242 )4 (ot r(gh — 9)), (13)
1=1

For the aims of LF CONSTRUCTION AND ADDITIVE CONVERSION CONDITION for
or — Op = or+ 0}, o7, 0} = 0 it is sufficient to have the MODIFIED SUPERALGEBRA without c.c.
(and green-typed parts in £}, I}) which given by the TABLE



(1, —=Y ¢ 4 fit ¢ Tt ly [i [+ [i Jii+ gl
to || =2l | 200 | 20 0 0 0 M| =M 0 0 0
tk 2lk: 4lki Akz _t25k:1 _tl 5k2 2]wk 0 _t05ik 0 Bk,ij ti(sk:i
tk+ 211@—1— Aikz 4lkz’+ t1+5k2 t2+5k1 —2]\1k+ toéik‘ 0 _Blm’j—k 0 _ti+5kz’
t 0 2511 | gl gi2 0 gé _ gg 0 12610 | —i+5i2| i _ G+ Jad
+t 0 102 |25 | g2 — gb 0 0 1152 | —j2tgil| @i _Dii+ _ it
lo 0 |—2M"|2M"™* | 0 0 0 | rKCUT | —riCl 0 0 0
Ik _ M 0 _toéik 25k | _Lgk2 _,,,,Cllm Wk X ki 0 _ K kig+ [isik
[k+ MR+ to Sik 0 [IHgk2 | 2kl | ) ,Cll)l _ Xk | kit | gk 0 _Jitgik
lkl 0 0 Bi,k:H— _Dkl _le 0 0 _Ki,kl 0 Lk;l,ij lz’{kal}i
lkl+ 0 _Bi,kzl 0 le+ Dkl+ 0 Ki,kl+ 0 _Lij,kl 0 _li{k+5l}z‘
gloc 0 _tkéik thtgik |k Jalas 0 _Jkgik | pktgik | _pk{igitk| pk{it gtk 0

Table 1: The superalgebra A(Y (2), AdS;) of the modified initial operators.




where AN = —2¢i5% + 2¢612651 4 21t §i1 552 Fi=1(5” — 5™,

Biil = (it itk DV = {25731
KKi _ Lligilt, Gl — Migin2 (14)
L i{éikélj [29(1;:51{:1 vt _|_g(l)] (15)

ik [t<512(5]’1 +5k15kj) +5k25j15lk) Lt <5ll(5j2_|_5k25kj) _|_5k15j25lk)}
gl [t(5k2<5i1 +5l15m> +5l25z’15kl> Lt (5k1<5i2 +5l25m> +5l15i25lk)}}

and the independent non-linear (quadratic) terms of the supercommutators has the form

1. | |
St} = 2Zt=7+lﬂ — Dt — 1 — P! | = M (16)

o, I} = —7 (42%‘*1@% (24 — 1)l — 261257 — 2751152'2) — picbit (17)
[li+,lj+} — _Opeld [l12+(90 _gO) lll+t++l22+t} +4t[j+tl+] Wit (18)

0y = e (S K+ K BR + K)o
—I—T{:42 JLkt k2 %t1+t2 + (>, 90 _ _) }5]1&2
k

{30 I (5, gh - o0 = X (19)
ok




Here, the quantities K, K", K}?, i = 1,2 compose CASIMIR OPERATORS Ky, K, for maximal Lie
superalgebra and Lie algebra (so(3,2)) in superalgebra A(Y(2), AdSy)
Kop — s0(3,2)

N\

Ko = S (KJ + KL +2K1

7

(K% K1 K12) = <(96)2 L L S 4l12+l12>.

It follows obvious Consequences and Classification from the Constrained Dynamical Systems for the

superalgebra A(Y(2), AdSy)
Consequences

o A(Y(2),AdSy)|, _, — A(Y (1), AdS;) — (J.Buchbinder, V.Kryhktin, A. Reshetnyak, NPB 2007)

S9=
e A(Y(2), AdS,)|,_, — A(Y(2), RM1) — (Moshin,A.R, JHEP (2007))

Hamiltonian Constraints Classification
e {10, lo} —2 lst-class constraints;

o {th T 10 [T ¢ 7 171"} = {o,} — 16 2nd-class constraints => we can not apply BFV-BRST

approach;

o {gi,mo} — Awp = Aup(gh, M), [0, 00} = Au(gh, ) + fS00,  ghl®@) # 0= F|| A}



In turn, for integer spin case the massive of generalized spin s = (s1, s2) AdS group irrep Dy(Ey(m), s)

are realized in the space of mixed-symmetry tensor fields ®(u1)51,(u2)52<5’3> € D(Ey, s1,s0), Em=0 =

r(n, — 2 + k; + d) subject to analogous Y (s, s5) as above for the spin-tensors.
5 ) g
<I><M1)31’<M2)32 satisfy to Klein-Gordon equation, divergentless and traceless equations for each type of the

indices and to the mixed-symmetry equation:
(V2+7r((s1 — ki —2+d)(s1 — k1 — 1) — s1 — 59 + m*} Dppyoppy v, (T) = 0,
VD i vy (B) = VIR () = 0
9Dy sy vy, = 97 P Puyeepg vyvgy = 9 P gy, =0,
q){(ul)sl,u%}u%---u%(x) = 0. (20)

Egs. (20) maybe realized also in terms of the operator conditions for the general state |®) € H;, to be now by LORENTZ

SCALAR in contrast to the BISPINOR vector

Ty =0, ) =0 ) =0, Loy =0 @)
with [j = D?— r—d(df) + r((ggJ — 26 —2)gf — g%) = [’+more,
[V = —CLWG]‘M, — alﬂ‘ai, [} — —ZCLWDM

2



These operators generate the non-linear integer HS symmetry algebra A, (Y (2), AdSy)
with only bosonic operators {o;,} = {os} \ {to,t',""} with central charge m* subject
to the same multiplication table as for A Y (2), AdS;) with restrictions:

e there are no 3 rows and columns with fermionic constraints: t,, ¢, t'";

e with change of the cells with non-linear with red-typed quantities W% ", X¥:

[li+ 7 lj+] — 9yl [l12+(g§ _ gé) g 4+ 522+ﬂ = _Wbij+
1,04 = Lo+ (K4 k) o7+ r {0002 4 (50, b — 2)tfote”
k
+T{[4 Z P2t (3 gk — 2)}5j25i1 = XE
k

. d d
e removing matrix 2[2] X 2 [2] structure of oy to scalar structure of oy,.

As in the fermionic case for LF construction and additive conversion of 07,0, : o — O; = o5 +

o7, lor, 0} = 0 it is sufficient to have the modified algebra without c.c. Aj,,,q(Y (2), AdSy) with [y,

instead of 78. _ _ _ -
Consequences and Hamiltonian Constraints Classification

1) A(Y(2), AdSy) — Ay(Y (1), AdSy) (J.Buchbinder, V.Kryhktin, P.Lavrov, NPB 2006),
s9=
2) Ay(Y(2), AdSy) oy s0(3,2) U {lp, I', 1"t} (C.Burdik, A.Pashnev, M.Tsulaia, 2000).
3) Ay D {lg} - 1 1ST CLASS C., Ay D {17, 19% £+, 1, I} - 12 2ND CLASS C., Ay D {gi, %}



2b) Additive conversion of (super)algebra A,,,,(Y(2), AdS;) with 1st and 2nd class con-

straints into one A.(Y (2), AdS,;) with only 1-class constraints system;

The following statement plays main role in solving this problem (A.Reshetnyak arXiv:0812.2329)

Proposition: |If the set of {0;},{0;} : H — H satisfy to nth order polynomial relations

m

n
lor,05} = f[}qu—i_E fr mOleOkp ===,
m=2

1=2
then from the requirement

0oj— Oy=o0;+0; :{}} - H = H, |o5,0,}=0 HNH=02,

such that (O, O} = F/ (0, 0)0. set of {d,}, {O;} form the non-linear superalgebras A’ given in

H' and A.,, in H® H with the respective multiplication laws:
n—1

[
Iy k1/ Z Iter \ pkpky /
[ODOJ} - I]Okl E : ()fij Hoksv § :Eks E :5161 ) (22)
s=1

[=s+1
(07,05} = (ffj + ZF[(!l])k(O/, O))Ok, with F;?k explicitly constructed w.r.t. fj;l L3
=2
So, for n = 2 (I.Buchbider,V.Kryktin,P.Lavrov 2006, |.Buchbider,V.Kryktin,A. Reshetnyak 2007) it follows
the (super)algebras of o}: A'(Y(2), AdS;) and one of O: A.(Y(2), AdSy) of our problem:

[0}, 0} = f[kJO;f — (= ) =(om f@nO/ 0} (23)

01,04} = f1,01 - (f?}' + (10O 150) 0f O + fF7 01O, (24)



2c) Verma module for (super)algebra A'(Y(2), AdS,) of additional parts to constraints and

its oscillator realization in Fock space H’;

1) require in constructing of Verma module for A.(Y (2), AdS,) the boundary condition on Cartan subsu-
peralgebra elements (Hermitian operators) which must contain linearly an arbitrary independent parameters
to be determined later from the requirement of reproducing correct conditions on irrep within LF on its

final stage of construction:

to{lo} — t{)(mo,fr){l()(mg,r)} = ymo(mg) + ..., go — gi(h") = h' +

. Considering as a basis the we choose M2 = —m? = M? =m?> +m* =0

To find {0} = {0}(bij, b}, b, by, b,07)}, 0,7, k1 = 1,2;4 < j as formal power series in creation and

annihilation variables whose number of pairs coincides with ones for 2-nd class constraints o0, we need:
e construct the Verma module Vy for non-linear A; (Y (2), AdSy):

being fundamental representation space for A (Y (2), AdS,;)| T : A — End(Vy)

e find H'-realization for V
generalizing the procedures developed for totally-symmetric HS fields C. Burdik, O. Navratil, A. Pash-

nev, for A (Y'(1), AdSy) ; A. Kuleshov, A. Reshetnyak arXiv:0905.2705 for superalgebra A'(Y (1), AdSy).

The composition law (proposition) for A; (Y (2), AdS,) is the same as for A,(Y (2), AdS,) with changes:

0 — O/[ and [T/Cll)i, kai, Xéu . ZOb] [ IC/bL Wb/ki’ Xék:z _ 6[)]




2) Introduction of Cartan-like decomposition:

so(3,2) so(3,2) so(3,2)
AV (2), Ads,) = {177 ¢ E}@{ ;e { 1Y l} EaoHae
b ) d m,; 90 » LO mz

3) highest weight representation
Ela‘O>V =0,a>0, (90750>‘O>V - (hi,mg)|0>v

with positive root vectors £’ = (I'V Ly 52) (> 0) fori < j.

Ymy1? 7 7 mey

4) basis space of Verma module following generalization of POINCARE-BIRKHOFF-WITT THEOREM
‘]\7>V — ’ﬁ’ij7 ﬁs>V _ <El—a%)n11 (El—a%>n12 (E/—azf)an (E/—o/f)nl (E/—a‘?>n (E/—a?)ng |O>V;

where 17;; = (n11, n12, n22), s = (N1, N, N2), Nk, Nij, 1 € N.
Note, in opposite to Verma module for totally symmetric A'(Y (1), AdSy) there exists not supercom-

muting non-linearly triple: entanglement of negative root vectors
A l/l—i— ni l/2—|—
(E/—oq)m (E/—oz?>n(E/—oz?>n2 o (_) (t/+)” (_) [l/1+ l/2+} W/12+

mi mo

. does not considered earlier

5) Using the multiplication for A;(Y'(2), AdS;) and the formula for the product of graded operators
P. Moshin, A. Reshetnyak (2007),

n

AB" =3 (~1)f BN e grtadh AL > 0,5 = e(B),adyA = adp (adly ' A) | adpA = [A, B}
k=0

one can calculate the explicit form of the Verma module.



Table 2: Odd Pascal triangle

6) Interestingly note, the generalized coefficients for number of graded combinations, C(S)Z, standard for

s = 0, for s = 1 are determined by the sequence of sums (with [(k + 1)/2] being by integer part of

(k+1)/2)):

nktln—ig—k+2 = y—gij—ln=3F 5i; k(n+1 +[(k+21:/2](@'2' 1+1)
i

LS SED S S S I 25

=1 ip_1=1 in=1 i1=1

and visually are presented by an ODD ANALOG OF THE STANDARD PASCAL TRIANGLE

—> To find the explicit action of all o) on an arbitrary |1, 7)1y = ‘N}v in opposite to the case of
A'(Y (1), AdS,) we need:

7\ start from the relations considered as BASIC BlL OCKS to construct o,



So for CARTAN GENERATORS, NEGATIVE ROOT VECTORS and part of the POSITIVE ROOT
VECTORS we have:

3 .
e ]\7>V = (SiQH(E/_a{)nj 2+ ‘6lm,ﬁs>v+5ﬂml ‘ﬁlm,ﬁs—l— (1,0,0)>V

l;j ]\7>V — ‘ﬁlm+5il5jm7ﬁs>v

ANy = =200y [, — (1, —1,0), @)y — ng [T, + (0, —1,1), i)y
3 ‘
j -
+ [ (E) 7 ¢ ]| Opm, sy

j=1
gl Ny = (Z i (6" 4 6™) 4+ nyd™ +n (0% — ) + hi> (i, )V
<m
INYy = —np|fim + (1, =1,0), @)y — 2n9a|fim + (0,1, —1), fis)y

ot

+n(h! = h* —ny —n+ 1) |fipm, ni,n — 1, ng)y H E’ 0‘1 | ‘sz, 0,0,m9)y

]2 ‘]\7>V 722(2?7/11 + nq9 + 299 +Z nk+h ) )’ﬁlm—l— (O,—l,O),ﬁ5>v
1
+§nn11(h — ht 4+ ng+n—1) |7, — (1,0,0), 7, — (0,1,0))y

w

3
— — I—ad \ n; 122 I—ad \n; ~ —
+n11ng [T, — (1, —1,1), )y + {H(E 2| — 711 (E'-o)mi=0is |yt }}Olm>ns>v

R et




from which it follows we have to know the action of: (l’2+, ', l'12) on |(_)}W, ﬁ5> .t on ‘(j}m, 0,0, n2>
1%

and some others with less complicated structure.

8) To this end we with use of the Casimir operator for so(3,2) Lie algebra

Ko = Z(Q(/)i? - 2961' - 4l/ii+l/ii> n 2<tl+t/ - 962 - 4l/12+l/12)

1

calculate the 9 independent types of non-linear commutators, for instance 3 from them for above:

1 5 _1/ m . n:—2m—2 . n.; N
. [7+\ "7 ) l/jj—|— J7+N\ " [+ O o
Eij [l/LJr? < ) = - E T (—) _M( _Wb/12+ )+ 2m2—|—2( _W/(12—|- )] :

) . : . J
m; m; m;  Mm; m:

U\ ne (IFN\" 0 n(ne = 1) (T (ra21)/2 mel
1% T - A AN 107 L hi+
() m@»(mi) -t () e 3 e
N I O L T 27cnll, T2

X <mz) (%) {ECQTZTH-l[}CZl Coqm K[|+ m; C2m+2[’C§ ym K%QZ]}a

[li+ n; 0 [+ n;—1 ' 1 [n2/2] . ]2+ no—2m—1 om
ne (U M H1e2hi g2t o 2ym-1 (U 1
[Z ’<mz‘) ] 2m; (mz) Lo =075 > (=2 (m2) <m2)

m=1
l/2—|— .11 [n1/2] B l/1+ ni—2m—1
[mzc e Xﬁ”]” 3 2 (=) (ﬁ)
1 ll1+
(o) [l qomalxe]]

with completely definite operators derived from the components of [y, and from the products of the

superalgebra A (Y (2), AdSy): W/ X" {/lei, , W/t Xm} {[’CobalHL[ 1 1" -}a



It permits to express, for instance, the action of ¢’ on vector \G}m, ns)y through the action of ¢
[n1/2] 9y m m
"0, Ts)y = Z (—2) {C%\m, 0,0,n7 —2m,n + 1,n9)y — CS}HH—Q\m, 0,0,n; —2m — 1,n,n9 + 1>V}
my mi

m=0
[n1/2]

—9r\"
Z ( mQIr) {<Cgﬁz(h2 _ hl —|—2n+n2) - ;%_Fl)‘m— 1,1707’]’1,1 — 2m7n7n2>v
m=1 1

—i—C’%n(hl —h:—ny—n+ )|m—1,0,1,n1 —2m,n — 1,n2>v}

[nl/Q] —QT m l/1+ ni—2m .
L Z (_2> (l/11+>m—1 (_) C«;lrlnl/ZQ—i-tH-n t/ ’0, 07 0’ n2>V7 .

m=1
9) Then we find the RECURRENT RELATIONS:

[n2/2] [ng/ZJmfl)/Z]

"= —2Tl/22+ e na no—2m—1 N~ 1 1
t ‘07 09 Oa n2>V — |An2>v - Z Z m% C2lm+1021l+1 t ‘0, nNo — 2( m + l + 1)>V
Im=0 H=0

[n2/2] m
—2
WITH VECTOR |A,,)y = ) (—;) {(Cg;;(hQ — b+ C52 )|0,1,m —1,0,0,n5 — 2m)y

m=1 my
o 122 7 g
_Cnfrl]-a()?m_l)oal)n —2m }__ (—) Cmfn 0,0,m,l,(),n —2m —1
2 ‘ 2 >V Mo n;) m% 2 +1‘ 2 >V

[n2/2],[n2/2=tm—1] _oy "m4t41
- ¥ (W) 3] [C;‘flfl MR = B 4 ny — 2(m 4 1+ 1))
Im=0,11=0 2

—0;21122””—1] 0,1, m 4 14,0,0,m5 — 2(*m + 1+ 1))y — C3a 2™ 1,0, 'm + 1,0, 1,mp — 2('m + 1+ 1))y

+%C§flf;m_l\0, 0, 4+ 4+1,1,0,n9 — 2('m + U +1) — 1>V}.
2



— the maximal degree of [ decreases on 2 = one may to find the direct action of #’ resolving the

k—1 k—1
n o im TN (1 . im in_k
[(ng—1)/2] {[ng/z] [na/2—(tm+1)] [2/2 & tmr= (1) & )

t’](i(),(),ngh/ = Z Z Z ----- Z Z (_1)k

recurrent relations:
] [W/2 )—k]

k=0 ! 11=0 Fm=0 F1=0
Sk (mAi)+k L -
> —2r L Cn2 On2—21m—1 0712_2(2?:11(Zm+ll)_k+10”2_2(Z§: (m"'zl) Fm—k
m% 2lm+4+1-"2114+1 T 2km 2k 41

A _ (22+\ym
X | OOZk (im0 +-k,0,0,n0— Q[i(erzl)Jrk] v }7 ‘AOIO,771,0,0/772>V = (l ) ‘An2>V

where the EXTERNAL SUM CONTAINS [(ny — 1)/2] INTERNAL DOUBLE SUMS, and for £ = 0 we
have only |A,,)v

10) — the action of o/, on |V} are found using as the BASIC BLOCK. For instance,

l/2+

the action of ¢/, .1""? has the exact form:

—~

t'|N)yv = n(h' —h* —ny —n+1) |fip,, 7is — (0,1,0))y — naglip, + (1, —1,0), 7ts)v

o _k—l ] — (o . _k‘—l ik
[(n2— 1/2]{[n2/2] [n2/2—(tm+1)] 2/2= 3 (mA1)=(k 1)] [2/2 3 (i) k]

—2%22’ﬁlm + (O, 1, — V + Z Z Z ...... Z Z

L1=0 km=0 k1=0

SR (mA)+k I o
X(_l)k (——27”> ! Cng CTLQ 2lm— 1 CnQ_Q(Zi'{:ll(Zm+ll)—k+1cn2—2<2§:11(Zm+ll)—2km—/€

m2 2lm+1"211+1 2km+1 2k14+1
2

‘A | | - | > } = (26)
T + (0,0, 0 (m + 1) + k), ny,n,ng — 203 (m+ 1) + k]

S |



n(hl — h2 — N9 — N + 1) ‘ﬁlm, ﬁs — (O, 1, O>>V - n12’ﬁlm + (17 _17 0)7 ﬁ5’>v
_2n22’nlm + (Oa 17 _1)7 ﬁS>V + ?‘]\7>V

with the vectors ‘Aﬁ o+ (0,0, ¢, n1,m, g — QQ]>V slightly modified as to |A,,)v.

n1+1/2

mi—1/2 1
2
2| Ny = mo § ( ) Cyt [+ (m,0,0), 71 — 2m,m,ma + Ly +my (—T) {(Oggﬁl(h? — R 420+ ny)

m
m=0 1

_sz+2) [T + (m, 1,0),n1 —2m — 1,n,n9)v + Cy (n(h1 — h* —ny —n+ )|, + (m,0,1),n; —2m — 1,n — 1,ny)y

me1/2 | e
_’ﬁlm+(m+17070)7n1_2m_17n+17n2>V>}+m1 Z (W) Com1 |V Ti1m + (m, 0,1),n1 — 2m — 1,1, n9) v/
m=0 1

- n . . 1
12| N)y = f(an +n1g + 2n99 + Y (g + hY) — 1) |71 — (0,1,0), 7y + §nn11(h2 —h'+ny+n—1)
k

X |ﬁlm — (1 0 0) ﬁs — (0, 1, 0)>V + n11N92 ‘ﬁlm — (1, —1, 1),ﬁ8>v

n
+1/12‘Olm>ns>V ‘[ - 22/7+ ‘Olm7n9>v ‘[0[

Nni1o ‘_,
Olm - nlm] 2

i — (0,0,1)] T g T
where to determlne I""#|IN)+ the ADDITIONAL BLOCKS (having the exact form and including the basic
one with ¢ \nlm,n5>v) are used.

— The actions of all other positive root vectors: I, 1, ' on |N)y are determined in the same form.
— Thus, we state that the VERMA MODULE V4 FOR NON-LINEAR ALGEBRA A (Y (2), AdS,)
[S CONSTRUCTED.

— In case of SUPERALGEBRA A[Y'(2), AdSy) the construction of the V does not significantly compli-
cate, but we have the enlarged Cartan-like decomposition extended by fermionic t/'*, ¢/, ¢ for & [ E .

—(1,0,0),75)v, (27)

The general vector [N)y — [N/)y:

INT)y = |70, Ny = (t/H)n(l)(t/%)ng\NW?ng =0,1, and ((g],t))]|0)v = (h',3m0)|0)v




—— for instance, the action of ' on |N v is easily established through its action on 60, 6Z~~, 0,0, n9)y
y g ko Vij

and the same form as in bosonic case but with modified [A] )y

[n2/2] m
—2r n 1
‘A£2>V - 2 (OQT%(hQ o hl__) + 2m—{—1)|0k:7 0,1,m —1,0,0,n9 — 2m>V
— \ my 2

1
+ng2n [1‘1)2707 O7m B 1’ 070777,2 - 2m>v o ‘62‘7 17O7m o 1707 17”2 - 2m>v} }

my 2/2) —2r\" [”2/2]’[”2/2_17”_1 _9 41141 P
i <—2 > 2m—1—1‘0k7 0,0,m,1,0,n9 —2m — 1)y — Z _2) 0212m+1{ [0212l+1 (h

m m m
2 m=0 2 Im=0,1i=0 2

1

—h! — 5 +ny —2("m + 1+ 1)) Cgflé e 1} 10°,0,1, % +11,0,0,n0 — 2('m + 1 + 1))y

2lm—1 Y
Lo [iug, 0,0, +1,0,0,15 — 2('m + 1+ 1))y — [0°,1,0, Yn + 17,0,1, 9 — 2(4m + 1 + 1)>V] }
11) Then, making use of the mapping (C. Burdik, 1985)
0 0
—() = — () = — n n n n n n n n
[T g Tls)v = [T, Ty s) = (Fi7)"0(f7) "2 (b11) "1 (b1o) 12 (b2) 22 (b)) ™ (07) ™ (b3 ) "20)
where red-typed symbols correspond to only superalgebra A’Y(Q), AdSy), ‘ﬁg, ij, n1,n,ny) are THE BASIS VECTORS
OF A FOCK SPACE #', for n{ = 0,1, ng,nij,n € No, and (2 + 6) pairs of creation and annihilation operators
{fk?fl+}:5kfl7 [bkab;—]:ékla [bljab;];;]:(szl6jk7 Z§]7k§l7 [b7b+]:17
— V4 REPRESENTS AS FORMAL POWERS SERIES (DUE TO R) IN THE CREATION AND ANNIHILATION

OPERATORS OF H’ (for simplicity BOSONIC CASE) WITH HELP OF CORRESPONDENCE:

n — b+b m R
Oy (C2 + €320 [ + (1,0,m), 8, — (20,0,2m)y > phd by + g OLB) (058" | )




— The negative root vectors (with omitting nontrivial /*" /'")

l/1+

=mb{, I =0 =) )b (8 5T + b7 — 6 + b+ 1

<m

—> the BASIC INITIAL BLOCK:

¢/ = (Bt = h? — b3y — bTb) b — bf1bia — 2bfban + Y

sy oyyer ()T

k=0 Llm=011=0 m=0 k=0
i 1 1 Z ( +00)+k + my —2r " (bé'—Q)m +7.2m+1
byy)2=i=1(m by bby — — b b
XH(QZmH) (22l+1)( 2) 27 mzn;)(mg) (2m + 1)1 7
—2r e ymet [y f B2 — R+ 267D by by Dbt by o 1] pem

+m21 ( m3 ) (b22) [612{ (2m)! - (2m + 1)!} (2m)! (2m)!(h W b)b} ¢
Yy —2r\" (5 [b+ {h2—h1+zb+b+b;b2  bib }_ b bt

L= =\ mj (2m + 1)1 12 (20 +1)! 20+ 2)1 (20 + 1)

b;z 9 1 m b+ 1+1 ko i i

= h? — h' + b by + bbb + 2 b+b]b D R () 2 i (D0 | =

GRS B ey L ()

= | (h! — h% — byby — bTb) b — b brg — 2bi5bay + ¥

—or ml h2 — B 4 2b%b + bib bb
—> l/2+ = My Z (W)(biﬁ) ( me + my Z ( ) b1+1 {b1+2|:( 2 2) — 171

: (2m+ 1)! (2m +2)!

hl— b2 —bth— b*b ) b+ LB
b ( 2 Y2 bh— bt p2m+l 11) Y22 p2m+1
02 (2m +1)! L 2m +1)! } m Z 2m+ I

~
~




1 |
112 @@wn+blm+2%&m+§:b%h+My—me+fﬁ—hﬁ+@@+b%wﬂ;

mOll mi

1 o (b;) ~T.2 1 1
T = 11 bm+1__/7+b __/7b
om, O(m%) (2m—|—1)!l L 5|t |02 — 5|t
7
bl 1= 1¢ |t bib
b+ 12 122 _{— hl h2 b+b _2 1Yl /7}
+§:( ) " i Uy T T =2+ G

_{h1+h2+b;—b2—2 bi'—bl
4

(2m)! T 2m + 1) }(hl — h* — by by — b+b)b}] bem,

with "BLOCK"-OPERATORS 1’2, #+, 1?2 having the same form as 7.

—> H’-realization of all other opeartors are determined in a similar way.

— 7{'-realization of VERMA MODULE FOR NON-LINEAR ALGEBRA A; (Y (2), AdS;) IS CONSTRUCTED.

The set of o} is invariant w.r.t. the new Hermitian conjugation defined by the operator K in the

(U1 K'E~"Wy) = (Uo K'E"|Wy)", (W1 K gy |Wa) = (Wo| K g [01)*. (28)
- S 1 0 .0
where K' = Z—i'Z7 J = Z Z ‘ﬁ(éaﬁlm;ﬁs>v (ﬁ ) - <0‘bn2bnbn1b7ﬂ1bmzbn22 1n1 2n2’
= Im)- s

— for the HERMITICITY OF BFV-BRST OPERATOR Q(Q;) for A.(Y (2), AdS,). (Au(Y (2), AdSy)).



2d)(Super)algebra of converted constraints, exact BFV-BRST operator;

To construct NILPOTENT BFV-BRST OPERATOR for non-linear algebra A, (Y (2), AdSy) of Oy:
. determine the multiplication table for Oy ;
. choose the ordering of the constraints in r.h.s of non-linear commutators;
. solve nontrivial (determined by non-linear commutators) Jacobi identities for O; in Ay (Y (2), AdSy);

prove that there are not other higher order algebraic relations;

S N

. construct BRST operator (), following to general BFV prescriptions.

For the Ist, 2nd items we have the same multiplication table as for A,(Y'(2), AdS,;) with choos-
ing of WEYL-ORDERING PRESCRIPTION (following to experience for fermionic HS fields with
A(Y (1), AdSy) J.Buchbinder,V.Krykhtin,A.Reshetnyak, 2007)

1
0,:0, — i(ofoj + (=100, + Oy, OJ}), (29)

where we have found that only this choice leads to exact () which has nonvanishing terms of the 3rd

degree in powers of ghosts C’.

The composition law (proposition) for A, (Y (2), AdSy) is the same as for A,(Y(2), AdS;) with

changes:

or — Oy and [rKY', Wi, X" — loy] — = [y, Wiy, Xy — Lo




2
P = —r (230 (L5 = 2 Lk o (D% — 2L 4 (G - 2g) L + (L' = 207G

k=1
- [(T+ — Y2 4 (L — 2z’2)T+] 5t — [(T — o)L + (L' — 25’1)T} 5@'2),
Wiy = re {[G§ = Gy = 2(g5" — go)JL" + (L' = 20")(GF — Gg) — (T — 2 )L™ + (LM = 20" T) + (T — 2¢*) L7
+(L22 . 2l/22)T+]}
Xy = {Lo + T(G%f [( 20T + (T — ’)T+]) }5@‘ + 7“{ [Z (Lik+ — ouiktyLik 4 (Lik 2zik)yk+}
k=1

1 / / / 11 ¢e 1 / / ! 12 ¢l
5 |(Gh+ Gl = 2(g0! + )T + (T = 2)(Gh + GB)| 67157 = 5 | (Gh + GF = 2(gt! + )T + (T = 26)(Gh + G})| 7% }

Jacobi identities
(=15 [[O1, 04}, Ok} + cycl.perm.(I, J, K) =0

has the general solution (A. Reshetnyak arXiv:0812.2329) with 3RD-ORDER STRUCTURAL FUNCTIONS F/i (o', O)

(—1)7e ((fu + FM) (e + i) + (F07* (P97, 0k} ) + cyel.perm. (1, J, K)
IJK(fRS + Fl(zsz ) = F/ O,

Proposition =— F](?])K(O7 0) = (fMK + (—1)°KM KA[)OA[+fAIK

The search of () for a nonlinear superalgebra is seeked on the standard principles of the BFV method in the form of the

expansion in powers of ghosts with use of (CP)-ordering of the ghost coordinate C! and momenta P; operators:

Q=Q+Q+Q;+.., degoQ,=n, Q*=0, gh(Q,C",P;)=(1,1,-1), Q=0 (30)



Definition of ()}, ()}, is standard = from the multiplication table whereas the form of Q) is determined
from the resolution of the Jacobi identities. For vanishing of 4th-, 5th- and 6th- order structure functions

for formal 2nd-rank “gauge” theory (M.Henneaux 1985), BRST operator () has an exact form:

Q' =CIO; + L7 (f5, + FPyPp(—1)71r 4 LCICK FRP Pppp(—1)7eKt=rr] | (31)

In case of algebra A, (Y (2), AdS,) there are 15 ghost pairs correspondingly for Lo, L™, L', L;;, L

(M0, Po)s (075 Pi), (i, PE), (055 Pig)s (nigs P5)s (0, P, (0, P), (g P

=TT T, G

R

, There are 3 types of nontrivial Jacobi identities (JI) for 6 triplets (L1, Lo, Lg), (LT, Ly, Ly), (L;, Lj*, Ly)
for Ap(Y'(2), AdSy), with the existence of 3rd-order structure functions. So, JI for (L;, L], L) after
reduction of L], has the form

2{5"253'1 [(L22 — 2P (TT — 267) + (G — 2g0) (L' — 20"2) + V(Wi — 2W)7) — (T — 2ty (LM — 21™)
—(G% B 296j)(L12 _ 2l’12)} _ g2 [(Lm IR (T o) — (T — 2t ) (L2 — 2l’12)} }

— 6297 ({Ln1, T} = {Lon, T} = {L1z, G} — G} — 4L'2) - 250762 L1, (32)

in view of the absence of higher-order structural functions, BRST operator ()’ for A;.(Y(2), AdS,) has

an exact form of the maximal 3rd degree in the powers of C!:

?
2

?
2

?
2

?
2

1 . 1 . o . o .
Q' = mLo+n/ L'+ n, L™ +n'T G+ o0 P+ onin Po + om0 Po + onitn Pe + 2ngn;t Py

. . 1
(g + ' )P = o Py +1Py) =2 | 5 D nema =1 e — | P+ st Yo (—1)FPE
k

1 1
+ g > P+ 5+ 5mdme + k(=1 g™ [P + [3mbne — s [P+ [ynlm — 0l | Pa



+r{n0nj (2(L7 = 2P 4 2L — 2Py — o LY — 2"YPE + (G — 2g0)P; + 2[ (L' — 202yt
(L{1+ — 21T Ppy) 62 — 15” ((L2 — 2P+ (T — 2t’+)792) — %52@' ((L1 — 2P + (T —2t)P1)])

——m U ”{Z V(GE — 298Py — (L2 — 21"2) Y (—1)"PE — [(T — 2t')Pyy + (LY — 20" P
k

_|_(T-|— o 2t/+)7322 + (L22 o 2l/22)7)+} i QUTUJ{Z(LJIH— o 2l/]k+)7pzk + [2(06 o 298)7)& o é(T+ o 2t/+)7)
k

_é(T —2tyP*]67 + E[Z(G’S — 296 )P — T =2t ; Pe] 5j15i2}}

k
5
7 U k12 Il
TQ NoNin;E { Z G() 7)22—!— P—I-Pll—w (Lll—l—P-i- o L22—|—73) Z Pé + 5 Z GOP + Z(_l) PG
k k [

_LpLp Z LUPREpLt | S pplitp2t Zl(—l)lLllPll+P12+}
I

+r2nom+nj{§ > (-1'G Z PePOYEH 4+ 2L P — LHPHT)Pal6% — 2T PHP# 5t 6%

+ 25{“52}1{@* Z Pl — 4iL2P1 Z )PL b — TPEPEI 6"

—|—2€{1‘752}Z{(T+P12 L1273—|—)7311—|— + (L12P TPlZ)P22+} 49 Z ZGZ 7312—1—(7311517523 P2252i51j>
2( L2678 — LM5M6H P N (<1)' PG} + b

l
BRST OPERATOR ()" is Hermitian:  Q"" K = KQ'. with K defined in Fock space H;,y = H'Q@H®H 4

K=K®l®ly,.



2e) Unconstrained Lagrangian formulation;

To construct LF FOR MASSIVE BOSONIC HS FIELDS IN ADS(D) SPACE we must extract dependence

on ghost 772; for non-constraint Gg from ()’ and Hilbert space H;,;, choose representation for H;,;.
— Q' = Q+nglo" +h')+B'Pg, (0" +h')=Gy+ (3 ,(1+6;)07 Py + (=1)'n*P + h.c.).
The same applies to a scalar physical vector | ) € H;ot, gh(|x)) =0,
1X) = |P) + [P a), |@A>{(b, bt )=C=P =0}~ 0 with |®) — basic initial HS field
and with the use of the BFV-BRST EQUATION @'|y) = 0 that determines the physical states,
Q) =0, (" +1)x)=0, dlx)=QIx"), (s,9h)[1x),IxH] =1(0,0),(1,=1)].  (33)

the 2nd Eqs. determines the spectrum of spin values for |y) and gauge parameters |x*), k= 1,...,6 and

the corresponding proper eigenvalue,

. d—5 .
oo (3”7‘2522) D (51 59) € (Z,No), X epsn (34)

whereas the 1st equation is valid only in the subspace of H;,; with the zero ghost number.
Because of [0, Q} = 0, @ being subject to the substitution i’ — —(s; + 52 —25), ie., Q — Qs, ),

is nilpotent in each of the subspaces H,,s, s,) Whose vectors obey Eqgs. (33), (34).



—> The equations of motion and the sequence of reducible gauge transformations:

Q(81782)‘X0>(81,82) =0, 5‘Xl>(81,52) - Q(S1782)|X1+1>( l=0,...,6,

§1,52)

for [x") = |x), and can be obtained from the LAGRANGIAN ACTION

0 0
Ssis0 = /dm (81782)<X ‘K(S1,82)Q(51,S2)|X >(51,32) K(sy,9) = K‘hi_ﬁ (Sﬁ%_%w)?

where the standard c-even scalar product in H;,; is assumed.
The corresponding LF of a bosonic field with a specific value of spin s subject to Y'(s1, $2) is an UNCON-
STRAINED REDUCIBLE GAUGE THEORY OF MAXIMALLY L = 5-TH STAGE OF REDUCIBILITY.



2f) New computer program to verify the validity of the oscillator Verma module realization

The oscillator realization of Verma module at least for the non-linear algebra A;(Y (2), AdS;) has rather
complicated form. Because of NON-DIRECT procedure of its derivation: by means of 1) the Verma
module construction then 2) its oscillator realization, the question arises:

Whether really the obtained formal power series (o) in non(super)commuting variables
will satisfy to a given multiplication table?

To resolve the problem we (A. Kuleshov, A. Reshetnyak arXiv:0905.2705) elaborate the computer
program on C'#-language within SYMBOLIC COMPUTATIONAL APPROACH which realize the check of
the coincidence of the left-hand-side of given supercommutator of operators oy, o/, with its right-hand-side
given by the multiplication table in each fixed degree in 7.

Given programm is applicable for the case of non-linear commutator superalgebras over Heisenberg-Weyl
superalgebras = extending the properties of known programs, for instance, module PLURAL (used for
polynomial algebra, so-called GG R-algebra, over non-commuting variables)

We verify the validity of the H'-realization for the Verma Module of superalgebra A'(Y' (1), AdSy)
(A. Kuleshov, A. Reshetnyak ) as the particular (for totally-symmetric HS fields) case of A’(Y(2), AdSy).

AY (1), AdSy) = {ty, t17,t7: 1, 177,13, 157,15} — 3 fermionic and 6 bosonic operators
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The program with draft title " PhysProject” represent the separate application, calculates:
NI B N AN ereg Al A — Pl : + +
1) L.H.S. of [0},0} :(0)0), — (—1)7%70,0}) = Py, (r; 6,0, f, f7)
with given accuracy in powers of : 77 and pass it to the ordering form, then calculates:
R +
2) R.H.S. of [0},0}: = Pj,(r;b;,b, f, fT)

with the same accuracy in powers of r: %, Then we visually compare it in two windows both in SYMBOLIC



FORM and in the VECTOR FORM:
5,m1 2by fTOF FbY ;,m;2<1, 1,1,0,1,3). (35)

Computer verification =: oscillator realization for A'(Y (1), AdS,) is
valid up to 4th order in r, and therefore due to restricted induction prin-

ciple the H'-realization of Verma Module for A’(Y (1), AdS,) is correct.

3. Summary of the results; Outlook

The basic results are listed on the 3rd slide, while the open problem look as follows:

e Explicit proof that ()-cohomologies in Hilbert subspace Hior with zero ghost number coincide

51,52)

with space of solutions for AdS-group irreps: H (Qb, Hiot) =~ D(Eo(m), s1,82) ;

e Consideration the LFs for HS fields in AdS(d)-space both for Y'(s1, $9, ..., ),k > 2, and with off-
shell algebraic constraints /;;, " when the Verma modules for reduced superalgebra A’ (Y'(2), AdS,)

are constructed without entanglement with lesser spectrum of auxiliary fields;
e Investigation the problem of LF for interacting HS fields on flat and AdS spaces;

e Development of the computer program properties to apply it for checking: 1) validity of the oscillator

representation for A'(Y'(2), AdSy); 2) nilpotency of () for superalgebra A.(Y (2), AdSy).

Thank you for attention



