Deviation of AdS Minimal Area from BDS Extrapolation at a Wavy Circle

with D. Galakhov, A. Mironov and A. Morozov (ITEP)

	GIMM IMM2	arXiv : 0812.4702 arXiv : 0803.1547
see also	IMM IM8	arXiv : 0712.0159 arXiv : 0712.2316

Talk at the 4th Sakharov conference, Moscow, May 22, 2009

- I) Introduction
- Why N=4 SYM ?
- ➡ simplest QFT
 - the most basic realization of gauge/gravity correspondence
- → may turn out to be exactly solvable
 - applications which have been fruitful
 - unified theory of 3+1 forces not anticipated 20 years ago

• Conjecture :

N=4 SYM and IIB Superstrings in $AdS_5 X S^5$ are equivalent the conjecture assumed in my talk

- A new approach to AdS/CFT by Alday-Maldacena '07
- Scattering amp. as opposed to correlators and their anomalous dim.
- Semiclassical string cal. as opposed to SUGRA appx.

	gauge coupling	weak	¥	strong	
	representation	on D3		N	
	planar		T-duality		
		on D(-1)	1	D	
	Situation	as Wilson loop exp.	as Minima	as Minimal area	
_				our corner	

Things known before our work

First introduce, with regard to n-gluon amplitude,

; polygon formed by a set of gluon momenta
 (1); one-loop result of the scalar fn from MHV amp.
 also

 D_{\Box} ; log of the abelian Wilson loop average with \Box ;

$$D_{\Box} = \oint_{\Box} \oint_{\Box} \frac{dy^{\mu} dy'_{\mu}}{(y - y')^{2 + \epsilon}}$$

• $M^{(1)} = D_{\Pi}$ by explicit computation

Drummond, Korchemsky, Sokatchev; Brandhuber, Heslop, Travaglini; Mironov, Morozov, Tomaras.

c.f. Gorsky's talk, Makeenko's talk

- The BDS (Bern-Dixon-Smirnov) exponentiation $e^{\tilde{\kappa}D_{\Pi}}$ represents a substancial part of the complete amplitude \mathcal{A}_n , but by now nonvanishing remainder fn confirmed numerically, starting at n=6, L=2 loop at weak coupling. BDKKRSVV 08031465 DHKS 08031466
- Correspondence between the scalar MHV function and the Wilson loop appears to be valid beyond one-loop.
- our comparison at the wavy circle in the strong coupling limit - A_{Π} (area) v.s. κD_{Π} $e^{\kappa \sqrt{\lambda} D_{\Pi}}$; extrapolation of BDS to strong coupling $e^{\sqrt{\lambda} A_{\Pi}}$; semiclassical string amp. A_{Π} minimal area reveals disparity analytically

Contents

- I) <u>Introduction</u>
- II) Nambu-Goto equation and the linearized form
- III) Method of computation for wavy boundaries
- IV) Our results : $A_{\sqcap} \not\sim \kappa D_{\sqcap}$ explicit form of $D^{(m|n)}$, $A^{(2,2)}$

V) More recent developments

II)

- AdS / CFT duality ; $\sqrt{\lambda} \equiv \sqrt{g^2 N} = \frac{R^2}{\alpha'}, \ \frac{1}{N} \sim g_s$
- work on the Euclidean worldsheet $\xi^1 = y_1$, $\xi^2 = y_2$
- The 1st ansatz ; $y_3 = 0$ … (1)

$$S_{E,NG} = \underbrace{\sqrt{\lambda}}_{2\pi} \sqrt{\frac{dy_1 dy_2 \sqrt{\det H}}{\int}} , \quad H_{ij} = \frac{1}{r^2} (\delta_{ij} - \partial_i y_0 \partial_j y_0 + \partial_i r \partial_j r)$$

recognize this as $f(\lambda) \xrightarrow{\lambda} \underset{\sim}{\operatorname{large}} \sqrt{\lambda}$

- The 2nd ansatz; $1 = y_{\mu}y^{\mu} + r^2 \Leftrightarrow Y^4 = 0$... (2)
- ① and ② contain the Alday-Maldacena rhombus solution.
 (y⁰ shift involved)

- Eq. of motion $\delta y_0 : \partial_1 \left(\frac{H_{22}}{r^2 \sqrt{\det H}} \partial_1 y_0 \right) + \partial_2 \left(\frac{H_{11}}{r^2 \sqrt{\det H}} \partial_2 y_0 \right)$ $- \partial_1 \left(\frac{H_{21}}{r^2 \sqrt{\det H}} \partial_2 y_0 \right) - \partial_2 \left(\frac{H_{12}}{r^2 \sqrt{\det H}} \partial_1 y_0 \right) = 0$ $\delta r : \text{similar one}$
- In practice, eliminate r^2 through $S_{E,NG}$ and 2
- linearization w.r.t. *y*₀

$$\begin{split} & \bigtriangleup_{\mathrm{IMM}} y_0 = 0 \ \text{, where } \bigtriangleup_{\mathrm{IMM}} = \bigtriangleup_0 - \mathcal{D}^2 + \mathcal{D} \\ & \bigtriangleup_0 = 4\partial\bar{\partial}, \ \mathcal{D} = z\partial + \bar{z}\bar{\partial} \\ & \text{general regular solution : } y_0 = \sum_{k\geq 0} Re(\alpha_k z^k)g_k(x = z\bar{z}) \\ & \text{A complete set of harmonics : } \end{split}$$

$$g_k(x) = \frac{1 + k\sqrt{1 - x}}{(1 + \sqrt{1 - x})^k}, \quad \tilde{g}_k(x) = \frac{1 - k\sqrt{1 - x}}{(1 - \sqrt{1 - x})^k}$$

- linearization $\rightarrow riangle_{IMM}$ appears to be generic

 Exact solutions (minimal surfaces named by their bndaries) 						
rhombus (light like)		$\kappa_{\Box} = 1$	Alday-Mal 1			
infinite strip (planar)		$\kappa_{\text{strip}} = 4 \frac{(2\pi)^2}{(\Gamma(1/4))^4}$	Alday-Mal 3			
circle (planar)		$\kappa_{\rm circle} = \frac{3}{\pi}$	Berenstein, Corrado, Fischler, Maldacena $(1+2)+ "y^0 = 0"$			
two circles (parallel)	$\bigcirc \bigcirc$		Olesen- Zarembo			
		non universality not well understood				
 how to deal with t 						
our proposal : make them WAVY by introducing ∞ly many parameters						

formulation

- the circle solution $r^2 = 1 y_i^2$
- deform the circle into by the conformal map $z = H(\zeta)$ $\partial z = 1 + \sum_{k=1}^{\infty} kh_k \zeta^{k-1} \equiv \partial H \equiv 1 + \partial h$ $\overline{\partial} z = 0$
- unit circle = pre image

• find $a(\zeta, \overline{\zeta}; h, \overline{h})$ s.t. $r^2(z, \overline{z}) = 1 - \zeta \overline{\zeta} + a(\zeta, \overline{\zeta})$

 $a|_{|\zeta|=1} = 0$

action

$$S_{NG}[a,h] = \frac{\sqrt{\lambda}}{2\pi} \int d^2 \zeta \frac{1}{r^2 + \mu^2} \sqrt{|\partial H|^2 (|\partial H|^2 + 4\partial r \bar{\partial} r)}$$

$$\mu ; \text{ regularization}$$

• once again, eq. of motion ;

$$0 = \partial \left(\frac{\partial \mathcal{L}}{\partial(\partial a)} \right) + \bar{\partial} \left(\frac{\partial \mathcal{L}}{\partial(\bar{\partial}a)} \right) - \frac{\partial \mathcal{L}}{\partial a} = \frac{1}{4(1 - \zeta\bar{\zeta})^{3/2}} \Big\{ \Delta_{\text{IMM}}(a(\zeta, \bar{\zeta})) + R(a; h, \bar{h}) \Big\}$$

and

 $a = a^{(1)} + a^{(2)} + \cdots$

Iterative construction of the solution ;

invert by the method of constant variation or Green fn

i) Notation and our results

$$A_{\Pi}^{reg} = A_{\Pi} - \frac{\pi L_{\Pi}}{2\mu} + 2\pi = -3\pi \left(\sum_{m,n} (-)^{m+n} A_{k_1 \dots k_m}^{(m|n)} h_{k_1+1} \dots h_{k_m+1} \bar{h}_{\ell_1+1} \bar{h}_{\ell_n+1} \right)$$

$$D_{\Pi}^{reg} = D_{\Pi} - \frac{\pi L_{\Pi}}{4\lambda} + \frac{\pi^2}{2} = -\pi^2 \left(\sum_{m,n} (-)^{m+n} D_{k_1 \dots k_m}^{(m|n)} h_{k_1+1} \dots h_{k_m+1} \bar{h}_{\ell_1+1} \bar{h}_{\ell_n+1} \right)$$

$$k_j, \ \ell_j \ \text{sums understood}$$

 $\begin{array}{l} \mu, \ \lambda \ ; \mbox{regularization parameters,} \ \ L_{\Pi} \ ; \mbox{the length of the contour } \Pi \\ A_{k|k}^{(1|1)} = \frac{(k+1)k(k-1)}{6} = D_{k|k}^{(1|1)} \\ A_{k_1,k_2|k_1+k_2}^{(2|1)} = \frac{(k_1+1)(k_2+1)}{12} (k_1^2 + k_2^2 + 3k_1k_2 - k_1 - k_2) = D_{k_1,k_2|k_1+k_2}^{(2|1)} \end{array}$

 will see that the conformal inv. + polynomial assumption on indices ensure

 $A_{k_1,\dots,k_m|k_1+\dots+k_m}^{(m|1)} = D_{k_1,\dots,k_m|k_1+\dots+k_m}^{(m|1)} , \quad A_{\ell_1+\dots+\ell_m|\ell_1,\dots,\ell_n}^{(1|n)} = D_{\ell_1+\dots+\ell_m|\ell_1,\dots,\ell_n}^{(1|n)}$

11

• The conformal inv. does not control the cases $\min(m, n) \ge 2$ with indices $k_i + 1$, $\ell_i + 1 > 2$ and we find $A^{(2|2)} \ne D^{(2|2)}$ analytically

ii) <u>D</u>⊓

• Representation of a generic coeff $D^{(m|n)}$ as a multiple sum

★
$$D_{k_1,...,k_m|\ell_1,...,\ell_n}^{(m;n)} = \text{symmetrized} \left(\sum_{i_1=0}^{k_1} \cdots \sum_{i_m=0}^{k_m} \sum_{j_1=0}^{\ell_1} \cdots \sum_{j_n=0}^{\ell_n} (k_m - i_m)(\ell_n - j_n) \right)$$

where $\sum_{p=1}^m i_p + \sum_{q=1}^n j_q = \sum_{p=1}^m k_p = \sum_{q=1}^n \ell_q$

• all of $D^{(m|1)}$ can be summed to give

$$D^{(\cdot|1)} \equiv \sum_{m=1}^{\infty} D^{(m|1)}_{k_1,\dots,k_m|k_1+\dots+k_m} h_{k_1+1}\dots h_{k_m+1} \overline{h}_{k_1+\dots+k_m+1} = -\frac{1}{6} \oint \overline{h}(\overline{\zeta}) S_{\zeta}(z) \zeta^2 d\zeta$$
$$z = \zeta + \sum_k h_k \zeta^k \quad \text{and} \quad S_{\zeta}(z) = \frac{z'''}{z'} - \frac{3}{2} \left(\frac{z''}{z'}\right)^2 \quad \text{; Schwarzian derivative}$$

- Highlight
- coincidence

$$\begin{split} A_i^{(1|1)} &= \frac{i(i^2 - 1)}{6} = D_i^{(1|1)} \\ A_{ij}^{(2|1)} &= \frac{(i+1)(j+1)}{12} \left(i^2 + j^2 + 3ij - i - j \right) = D_{ij}^{(2|1)} \\ A_{ijk}^{(3|1)} &= \frac{(i+1)(j+1)(k+1)}{18} \left(i^2 + j^2 + k^2 + 3(ij+jk+ik) - (i+j+k) \right) = D_{ijk}^{(3|1)} \end{split}$$

difference

$$\begin{split} A_{ij|kl}^{(2|2)} &= \delta_{i+j,k+l} \frac{k+1}{48(i+j-1)(i+j+1)} \\ &\times \Big\{ 2ij(i^4+5i^3j+8i^2j^2+5ij^3+j^4) + 2(i+j)^5 - 2(k^2-k+1)i^2j^2 \\ &+k^2(k^2+k-2)(i^2-ij+j^2) + (3k^4+3k^3-10k^2+4k-2)ij-k^2(k^2+k-2) \\ &-\frac{1}{i+j} \Big(2(k^3+k^2-2k+2)(i^4+j^4) + (7k^3+9k^2-16k+16)ij(i^2+j^2) + (9k^3+15k^2-24k+24)i^2j^2 \\ &-2(k^3+k^2-2k+1)(i^2+j^2) - (5k^3+3k^2-8k+4)ij \Big) \Big\} \times h_{i+1}h_{j+1}\bar{h}_{k+1}\bar{h}_{l+1} \end{split}$$

$$D_{ij|kl}^{(2|2)} = \delta_{i+j,k+l} \frac{1}{24} \Big((i+1)(j+1)(k+1)(i^2+3ij+j^2-i-j) \\ -(i+j+2)(k+2)(k+1)k(k-1) + \frac{3}{5}(k+3)(k+2)(k+1)k(k-1) \Big) h_{i+1}h_{j+1}\overline{h}_{k+1}\overline{h}_{l+1} \Big]$$

iv) Conformal Invariance

With the AdS3 ansatz, reduces to SL(2). When acting on a functional F[z(s)] of a parametrized curve $\Pi : s \rightarrow C$

The three generators are

$$\hat{J}_{-}F = \oint \frac{\delta F}{\delta z(s)} ds , \quad \hat{J}_{0}F = \oint z \frac{\delta F}{\delta z(s)} ds$$
$$\hat{J}_{+}F = \oint z^{2} \frac{\delta F}{\delta z(s)} ds$$
$$\hat{J}_{-} = \frac{\partial}{\partial h_{0}} , \quad \hat{J}_{0} = \frac{\partial}{\partial h_{1}} + \sum_{k=0}^{\infty} h_{k} \frac{\partial}{\partial h_{k}}$$
$$\hat{J}_{+} = \frac{\partial}{\partial h_{2}} + 2 \sum_{k=0}^{\infty} h_{k} \frac{\partial}{\partial h_{k+1}} + \sum_{k,m=0}^{\infty} h_{k} h_{m} \frac{\partial}{\partial h_{k+m}}$$

- the integrand of D_{\Box} varies by a total derivative under infinitesimal version of SL(2,R) ; $z \rightarrow \frac{az+b}{cz+d}$

• SL(2,R) is an isometry within our ansatz

• Use :

e.g.
$$A_{ijk}^{(3|1)}$$
 \hat{J}_{-} annih. \Rightarrow vanishes if any one of the indices
with $A^{(2|1)}$, $A^{(1|1)}$ given is minus one

Let

$$A_{ijk}^{(3|1)} = \alpha(i+1)(j+1)(k+1)(i^2+j^2+k^2+\beta(ij+jk+ik)+\gamma(i+j+k)+\delta)$$

 \hat{J}_0 , \hat{J}_+ annih. $\Rightarrow \alpha = \frac{1}{18}$, $\beta = 3$, $\gamma = -1$, $\delta = 0$

- Hence, the assumptions of the polynomial structure and of the conformal inv. of A_{Π} and $D_{\Pi} \Rightarrow A^{(m|1)} = D^{(m|1)}$ $A^{(1|m)} = D^{(1|m)}$
- $A^{(n|m)}$ with min $(m, n) \ge 2$ fails to be a polynomial.

v) Nonplanar Case

relax the requirement $y^0 = 0$

the b.c. are now

$$r(\zeta,\bar{\zeta})\Big|_{\zeta\bar{\zeta}=1} = 0$$

$$y_0(\zeta,\bar{\zeta})\Big|_{\zeta\bar{\zeta}=1} = \sum_{k=0}^{\infty} q_k \zeta^k + \sum_{k=1}^{\infty} q_{-k} \bar{\zeta}^k$$

the iterative procedure

 $r(\zeta, \overline{\zeta})$ as before

$$y_0(\zeta,\bar{\zeta}) = b^{(1)}(\zeta,\bar{\zeta}) + b^{(2)}(\zeta,\bar{\zeta}) + \cdots$$
$$b^{(1)}(\zeta,\bar{\zeta}) = \sum_{k=0}^{\infty} q_k \zeta^k g_k(\zeta\bar{\zeta}) + \sum_{k=1}^{\infty} q_{-k} \bar{\zeta}^k g_k(\zeta\bar{\zeta})$$

• A and D coincide up to the cubic order in h, \bar{h} and q.

V)

- progress on the construction of classical spyky solutions in AdS space, Jevicki, Jin 0903.3389 Dorn, Jordadze, Wuttke 0903.0977
- discretized, numerical approach to NG eq. & minimal surfaces
 Dobashi, Ito, Iwasaki 0901.3046, 0805.3594
- progress on the remainder fn

ABHKST, 0902.2245 , 2-loop , \forall_n

• exact determination of the remainder function in $R^{1,1}$

Alday-Maldacena 4,5 0903.4707, 0904.0663

Contents

- I) <u>Introduction</u>
- II) Nambu-Goto equation and the linearized form
- III) Method of computation for wavy boundaries
- IV) Our results : $A_{\sqcap} \not\sim \kappa D_{\sqcap}$ explicit form of $D^{(m|n)}$, $A^{(2,2)}$

V) More recent developments