GENERALIZED HEISENBERG-EULER ENERGY AND TIME SCALES FOR STRONG ELECTRIC FIELD DEPLETION

S.P. Gavrilov^{*}, D.M. Gitman * -Herzen State Pedagogical University of Russia

THE 4-TH INTERNATIONAL SAKHAROV CONFERENCE ON PHYSICS, MOSCOW, MAY 18-23 2009

Plan of the talk:

- Introduction
- Mean-energy density
- Initial state as thermal equilibrium
- SU(3) chromoelectric field

QFT in an external background:

$$j^{\mu}A_{\mu} \to j^{\mu}\left(A_{\mu} + A_{\mu}^{\mathsf{ext}}\right)$$

Strong-field QFT (quasiconstant field approximation):

$$\mathcal{L} = \mathcal{L}^{(0)} + \mathcal{L}^{(1)},$$

Maxwell Lagrangian:

$$\mathcal{L}^{(0)} = \left(E^2 - B^2\right)/8\pi,$$

Heisenberg-Euler Lagrangian (vacuum polarization contribution):

$$\mathcal{L}^{(1)} = \int_0^\infty \frac{\exp\left(-im^2 s\right)}{8\pi^2 s} \left[e^2 EB \coth\left(eEs\right) \cot\left(eBs\right) \\ -\frac{1}{s^2} - \frac{e^2}{3} \left(E^2 - B^2\right)\right] ds.$$

What is condition when quasiconstant field approximation is consistent, especially, for the case of an electriclike field? Applications:

- Strong field experiments on SLAC and TES-LA X-ray lasers,

- astrophysics of neutron and hot strange stars,

- graphene physics,

- initial state of quark-gluon plasma (chromoelectric flux tube model, color glass condensate). Strong magnetic field ($B \gg m^2/e, E = 0$) yields

$$\mathcal{L}^{(1)} \approx -\left(\frac{\alpha}{3\pi}\ln\frac{eB}{m^2}\right)\mathcal{L}^{(0)}.$$

Restriction due to vacuum polarization:

$$B \ll F_{\max},$$

 e^+e^- uninteracted [Weisskopf, 1936; Ritus, 1975]:

$$F_{\text{max}} = \frac{m^2}{e} \exp\left(\frac{3\pi}{\alpha}\right) \approx \frac{m^2}{e} 10^{560},$$

 e^+e^- interacted [Shabad and Usov, 2005]:

$$F'_{\text{max}} = \frac{m^2}{4e} \exp\left(\frac{\pi^{3/2}}{\sqrt{\alpha}} + 2 \times 0.577\right) \approx \frac{m^2}{e} 10^{28}$$

HEL is related to the vacuum-to-vacuum transition amplitude:

$$c_v = <0, out|0, in > = \exp\left(i\int dx \mathcal{L}^{(1)}\right)$$

Strong electric field ($E \gg m^2/e, B = 0$) yields

$$\operatorname{Re}\mathcal{L}^{(1)} = -\frac{\alpha}{3\pi}\ln\frac{eE}{m^2}\mathcal{L}^{(0)}$$

Is it relevant [Greenman and Rohrlich, 1973]

$$E \ll F_{\max} \approx \frac{m^2}{e} 10^{560}$$
?

Vacuum polarization (local, T-independent) + pair creation (global, T-dependent).

T-constant field regularization:

$$A_{3}(t) = \begin{cases} -Et_{1}, & t \in (-\infty, t_{1}), \\ -Et, & t \in [t_{1}, t_{2}], \\ -Et_{2}, & t \in (t_{2}, +\infty). \end{cases},$$

where T is sufficiently large

$$\left[1 + \frac{m^2}{eE}\right]^2 \ll eET^2.$$
 (1)

5

Mean-energy density with respect of the initial vacuum $|0, in\rangle$:

$$w = \frac{1}{2} \langle 0, in | \left[\psi(x)^{\dagger}, \mathcal{H}\psi(x) \right] | 0, in \rangle \Big|_{x^0 = t_2 - 0} ,$$

is independent of the spatial coordinates and time-dependent.

Representation via the in-in Green function:

$$w = -\frac{1}{4} \left[\lim_{t \to t'=0} \operatorname{tr} \left[\left(\partial_0 - \partial_0' \right) S_{in}(x, x') \right] + \lim_{t \to t' \neq 0} \operatorname{tr} \left[\left(\partial_0 - \partial_0' \right) S_{in}(x, x') \right] \right] \right|_{\mathbf{x} = \mathbf{x}', x^0 = t_2 - 0}$$

where

$$S_{in}(x,x') = i\langle 0, in | T\psi(x)\overline{\psi}(x') | 0, in \rangle$$

= $S^{c}(x,x') + S^{p}(x,x')$.

 $S^{c}(x, x')$ is causal Green function

$$S^{c}(x,x') = i \frac{\langle 0, out | T\psi(x)\overline{\psi}(x') | 0, in \rangle}{\langle 0, out | 0, in \rangle},$$

where $|0, out\rangle$ is the final vacuum.

 $S^{c}(x, x')$ can be represented as the Fock-Schwinger proper time integral:

$$S^{c}(x,x') = \int_{0}^{\infty} f(x,x',s) ds \,,$$

where f(x, x', s) is the Fock–Schwinger kernel.

The function $S^p(x, x')$ represents contribution of created pairs and is linear functional of the differential mean number of pairs created from vacuum,

$$\aleph_{\mathbf{p},r} = \exp\left(-\pi \frac{m^2 + \mathbf{p}_{\perp}^2}{eE}\right) \,.$$

Then contributions due to vacuum polarization and pair creation are separated:

$$w = \frac{w^{c}}{\binom{\text{vac. pol}}{\text{loc. } \sim T^{0}}} + \frac{w^{p}}{\binom{\text{pair. cr}}{\text{glob. } \sim T^{2}}},$$
$$w^{c} = E \frac{\partial \text{Re}\mathcal{L}^{(1)}}{\partial E} - \text{Re}\mathcal{L}^{(1)} \approx -\left(\frac{\alpha}{3\pi} \ln \frac{eE}{m^{2}}\right) \mathcal{L}^{(0)},$$

Pair creation contribution:

$$w^{p} = \frac{1}{4\pi^{3}} \int_{D} d\mathbf{p} \sum_{r=\pm 1} \aleph_{\mathbf{p},r} \varepsilon_{\mathbf{p},r} ,$$

$$D : |p_{3}| < eET/2 ,$$

 $\varepsilon_{\mathbf{p},r} = \sqrt{m^2 + \mathbf{p}_{\perp}^2 + (eET/2 - p_3)^2}$ - energy of out-particles, $\mathbf{p}_{\perp} = (p^1, p^2, 0)$.

T-leading term (being proportional to T^2):

$$w^p = eE \aleph T$$
, $\aleph = \frac{e^2 E^2 T}{4\pi^3} \exp\left(-\pi \frac{m^2}{eE}\right)$,

 \aleph - the total number-density of pairs created.

From the condition

$$w^p \ll \mathcal{E}^{(0)} = E^2/8\pi$$

restriction from above:

$$eET^2 \ll \frac{\pi^2}{2e^2} \exp\left(\pi \frac{m^2}{eE}\right).$$

Initial state as thermal equilibrium at temperature θ :

$$w = w^{c} + w^{c}_{\theta} + \tau^{p}_{\theta}$$

(~T⁰) (~T¹) (~T²)

 w^c - from vacuum polarization,

 w_{θ}^{c} - from work of the field on particles from the many-particle initial state,

 $\tau^p_\theta = w^p + w^p_\theta$ - energy density of pairs created from the many-particle initial state,

$$\begin{split} w^{p} &= \frac{1}{4\pi^{3}} \int_{D} d\mathbf{p} \sum_{r=\pm 1} \aleph_{\mathbf{p},r} \varepsilon_{\mathbf{p},r} \\ w^{p}_{\theta} &= -\frac{1}{4\pi^{3}} \int_{D} d\mathbf{p} \sum_{r=\pm 1} \aleph_{\mathbf{p},r} n_{\mathbf{p},r} (in) \varepsilon_{\mathbf{p},r} , \\ n_{\mathbf{p},r} (in) &= [\exp\left(\tilde{\varepsilon}_{\mathbf{p},r}/\theta\right) + 1]^{-1} , \\ \text{where } \tilde{\varepsilon}_{\mathbf{p},r} &= \sqrt{m^{2} + \mathbf{p}_{\perp}^{2} + (qET/2 + p_{3})^{2}} \text{ is the energy of a free } in-particle. \end{split}$$

9

Fermions:

at low temperature, $\theta \ll eET$,

$$eET^2 \ll \frac{\pi^2}{2e^2} \exp\left(\pi \frac{m^2}{eE}\right).$$

at high temperature, $\theta \gg e E T$,

$$\frac{(eE)^2 T^3}{\theta} \ll \frac{3\pi^2}{e^2} \exp\left(\pi \frac{m^2}{eE}\right).$$

Bosons (J = 1 for scalar particles, J = 3 for vector particles):

at low temperature, $\theta \ll eET$,

$$eET^2 \ll \frac{\pi^2}{Je^2} \exp\left(\pi \frac{m^2}{eE}\right),$$

at high temperature, $\theta \gg e E T$,

$$\theta T \ln \left(\sqrt{eE}T \right) \ll \frac{\pi^2}{2Je^2} \exp \left(\pi \frac{m^2}{eE} \right)$$

Soft parton production by SU(3) chromoelectric field E^a (a = 1, ..., 8).

The \mathbf{p}_{\perp} -distribution densities of gluons $n_{\mathbf{p}_{\perp}}^{gluon}$ and quarks $n_{p_{\perp}}^{quark}$ produced from vacuum:

$$\begin{split} n_{\mathbf{p}\perp}^{gluon} &= \frac{1}{4\pi^3} \sum_{j=1}^3 Tq \tilde{E}_{(j)} \tilde{\aleph}_{\mathbf{p}}^{(j)}, \\ n_{p_\perp}^{quark} &= \frac{1}{4\pi^3} \sum_{j=1}^3 Tq E_{(j)} \aleph_{\mathbf{p}}^{(j)}, \\ \tilde{\aleph}_{\mathbf{p}}^{(j)} &= \exp\left(-\frac{\pi \mathbf{p}_\perp^2}{q \tilde{E}_{(j)}}\right), \ \aleph_{\mathbf{p}}^{(j)} &= \exp\left(-\pi \frac{M^2 + \mathbf{p}_\perp^2}{q E_{(j)}}\right) \end{split}$$

where $E_{(j)}$ are the eigenvalues of the matrix $iT^{a}E^{a}$ for the fundamental representation of SU(3); $\tilde{E}_{(j)}$ are the positive eigenvalues of the matrix $if^{abc}E^{c}$ for the adjoint representation of SU(3);

$$|E_{(j)}| \leq \sqrt{C_1/3}$$
 and $|\tilde{E}_{(j)}| \leq \sqrt{C_1}$,
 $C_1 = E^a E^a$ is Casimir invariants for $SU(3)$.

$$n_{p_{\perp}}^{gluon} \gg n_{p_{\perp}}^{quark},$$

then only the energy density of gluons created is important. Total energy density of gluons created from vacuum:

$$w^{p} = \sum_{j=1}^{3} w^{p(j)}, \ w^{p(j)} = \frac{1}{4\pi^{3}} \int_{D_{(j)}} d\mathbf{p} \aleph_{\mathbf{p}}^{(j)} \varepsilon_{\mathbf{p}}^{(j)},$$

from many-particle state at finite temperature:

$$w = w^{p} + w^{p}_{\theta}, \quad w^{p}_{\theta} = \sum_{j=1}^{3} w^{(j)}_{\theta},$$
$$w^{(j)}_{\theta} = \frac{1}{4\pi^{3}} \int_{D_{(j)}} d\mathbf{p} \aleph^{(j)}_{\mathbf{p}} n^{(j)}_{\mathbf{p}} (in) \varepsilon^{(j)}_{\mathbf{p}},$$
$$n^{(j)}_{\mathbf{p}} (in) = [\exp(\tilde{\varepsilon}_{\mathbf{p}}/\theta) - 1]^{-1}.$$

At low temperature, $\theta \ll q \sqrt{C_1} T$,

$$w \simeq w^p \lesssim q \sqrt{C_1} T \aleph^{gluon}, \ \aleph^{gluon} = \frac{3Tq^2C_1}{8\pi^3},$$

at high temperature, $\theta \gg q \sqrt{C_1} T$,

$$w \lesssim \frac{3\theta T q^2 C_1}{8\pi^3} \ln\left(q\sqrt{C_1}T^2\right).$$

12

Restrictions:

$$1 \ll q\sqrt{C_1}T^2,$$

At low temperature, $\theta \ll q\sqrt{C_1}T$,
$$q\sqrt{C_1}T^2 \ll \frac{\pi^2}{3q^2},$$

at high temperature, $\theta \gg q\sqrt{C_1}T$,
$$\theta T \ln \left(q\sqrt{C_1}T^2\right) \ll \frac{\pi^2}{3q^2}.$$

The above established consistency restrictions determine, in fact, the time scales from above of depletion of an electric field due to the backreaction.

See details in [S.P. Gavrilov and D.M. Gitman, arXiv:0805.2391; Phys. Rev. Lett. **101**, 130403 (2008); arXiv:0709.1828; Phys. Rev. D **78**, 045017 (2008).]