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“Problems with higher spins are not problems with free theory”

Truel

but still

Free theory not a closed subject



Introduction II: Free theory - symmetric tensors

“Canonical’ description of free, symmetric higher-spin gauge fields via
(Fang-) Fronsdal equations (1978):

» Bosons (~ spin 2 — R,, =0) :

ful‘“’ujs = D(P,ul,us - aulaagpauz.”'us _I_ . e _I_ 8'[”’18“2(’0&@#3---[‘3—'_ e, — O
c» gauge invariant under § o = OA iff N'(=ANY,) =0;
<> Lagrangian description iff " (= ¢ .3) = 0.

» Fermions (~ spin 2 =@, — v, ¥ =0) :

Slh-nﬂs = i{'yaaa ¢u1-..us - (8u1’7a¢au2...us + )} =0

c» gauge invariant under ¢ = Je¢ iff ¢ =

<> LLagrangian description iff ' (=¢*,)=0.



Introduction II: Free theory - mixed-symmetry

Generalisation to (spinor -) tensors of any symmetry type in
Labastida equations (1986 — 1989):

» Bosons (2-families: ©y,..u, v, = Puv, ):

Fror, =000, — 0,0 0ap, 0, — 00" 0 pu, av, +82u"’+821/"’+8u8V"' =0

<> gauge invariant under

0Py v, = O AL pe 1,0, T Ov A2 sy Vr—1

iff suitable combinations of traces of A(Y) and A® vanish:

<> [Lagrangian description iff suitable combinations of double traces of ¢, ., vanish.

» Fermions (2-families: % .. viw, = Ypuo v, ):

Su,v, = {7 0a Yoy, v, — au'yalpaus_l,w - 3:/70‘1#”8,(1%_1)} =0

> similar constraints, but no Lagrangian description available for the general case!




Introduction III: Hsp & Strings - tensionless SFT

Constraints

keep to a minimum the number of off-shell components

» Consider the equations of motion for open String Field Theory

Q) = 0,

where Q is the BRST charge, and evaluate the limit o’/ — oo;
[Bengtsson, Henneaux-Teitelboim, Lindstrom, Sundborg, D.F.-Sagnotti, Sagnotti-Tsulaia,

Lindstrém-Zabzine, Bonelli, Savvidy, Buchbinder-Fotopoulos-Tsulaia-Petkou, . . .]

» Actually, by restricting the attention e. g. to totally symmetric tensors it is possible to
show that this equation splits into a series of triplet equations:

Op = 0C, dp = ON,

OC = 0-¢ — 0D, 0C = OA,

oD = o0-C, 0D = 0-AN
s, —2,s—4,...

where ¢ is the spin-s field, describing the propagation of spins

with more off-shell components than ~ >  (Fronsdal).

[Extension of triplets to irreducible spin s — Buchbinder-Galajinski-Krykhtin 2007 ;
frame-like analysis for reducible & irreducible cases — Sorokin-Vasiliev 2008]



Introduction IV: ~ higher-spin geometry? ~

For Maxwell, Yang-Mills (spin 1) and Einstein (spin 2) theories

A, — F,, ~0A

the curvature : 5

central to provide a geometrical understanding of the dynamics

Do they exist analogous tensors for hsp?
Yes, at least at the linear level.
[de Wit-Freedman '80]
Prig...pus — Rul...us;ul...us ~ 8890

S.t.

6RM1...MS;V1...I/S = O
under 0Pureopte = OuNiopiseo e + O Npspigepps + -+

for unconstrained gauge fields and gauge parameters




T hree questions

I. LLagrangian description for fermions of mixed symmetry?
II. Unconstrained Lagrangians for bosons and fermions?
I1I. Any role for curvatures in the dynamics?

unconstrained Lagrangians & Stueckelberg symmetries



(Unconstrained) Lagrangians for bosons & fermions

of any symmetry

)



Unconstrained hsp I: local theory - symmetric tensors

Fronsdal Unconstrained
da = N’/
Fs t.0F = 393N/ = F — 393 ’
> A aﬁ{aA: 0.
L'Souzo:%cp(]:—%n}"’) L =7
69

Basic ingredient: the Bianchi identity:

1
0-A — §8A’ = —;83\@0” — 0 -a — 8&’2
=c

compare with gravity

1

clonn = 2 (4= 2aa) 3 (o3

unconstrained Lagrangians for any spin s [D. F. - A. Sagnotti 2005, 2006]

Generalisation to (A)dS: [A. Sagnotti - M. Tsulaia’03; D. F. - J. Mourad - A. Sagnotti, '07]




Unconstrained hsp III: local theory - mixed symmetry bosons

[A. Campoleoni - D. F. - J. Mourad - A. Sagnotti, 2008]

Here: Two-family fields  ou, v,

)
Ppr... s, ; Vi... Uy, — @,
_ O i) Py |yt ) o — 0'@,  upper indices « added indices
Notation: ¢ .
o 90...;)\“2'2...#;;... - 82@?
\go_._; By oo i N pid s Tij . lower indices <« removed indices

Families of symmetric indices —— reducible gl (D) tensors

Y

Basic constrained theory: [Labastida 1986, 1989]

F = Dgp — 8Z6@@+56181ﬂ390 = 07

<> gauge invariant under d¢ = 9'A; iff  T(;i Ny =0;

c» Lagrangian description iff - T;; Tuye = 0.

— not all traces vanish;

— the constraints are not independent.



Unconstrained hsp IV: local theory - mixed symmetry bosons

Basic unconstrained kinetic tensor:

|
A = F——Bzajakaijk
2

~

But, due to linear dependence of constraints

ik = agp(P) = $T(; Py,

To construct the Lagrangian — resort to Bianchi identity:
0iA —L07T; A = —2870%0'Cyj
Cijrt = T(i; Ty e + Cijr (@)
As for symm case, take care of terms in o C;j; Via a Lagrange multiplier 3:
L=23{p,E) 4+ (i, (Es)i) + 3 Bijur (Ep) ijwr)
where in particular the e.o.m. for ¢, gauge fixing a;;; = %T(,-jCDk) to zero, is

E, =Ey, 4+ 2 ninf By = 0,

Ep = F = o' T F + oo 0™ (2T T — Tiw Thy; ) F -




Unconstrained hsp V: local theory - mixed symmetry fermions

[A. Campoleoni - D. F. - J. Mourad - A. Sagnotti, 2009]
The basic kinematical setting of Labastida [1987]

S=i(dy — 0'¢;) =0,
59 = O0'¢;,
Ty = 05 viejy = 0,

can be easily turned to its unconstrained counterpart:

2

W =S —|— 281836” — O,
< d¢ = Oley,

§ij (V) = %’Y(i“{j)»
OV = €,

BUT, in the constrained setting, no Lagrangian available for fermions;

» Using the Bianchi identity (here constrained theory, for simplicity)
0iS — 53 PviS — 5 TyS — ¢ 01y S = 50I0FT 357,y

it is possible to find the complete Lagrangian, for N-family fields, in the form

y

‘C — % <7~Zaz]]9\[,q:0kp,q r'/]prQ(fY[Q]S[p])> _I_ hC7

a(g+1)
Pt

L — _(=1)
P plg!(ptg+1)t -



Unconstrained higher spins & geometry

o)



HSP & Geometry I: massless theory

Generalisation of geometric equations for spin 1 et spin 2:

[D.F. - A. Sagnotti, 2002, D.F. - J. Mourad - A. Sagnotti, 2007]

spinl (Maxwell) : 0% F,, = 0O

spin 2 (Einstein) : naﬁRaM,gy =0

spin3: |Ay, = =0°RPs0.,, =0

1
O

» (Consistency :) the equation A, = 0 always implies the compensator
equation
A, =0 — F —-308%a, =0, with da,=A

» (Lagrangian :) V “Ricci tensor” A, ({ax}) identically divergenceless Ein-
stein tensors &, ({ar}) s.t.

L=se&Uah) — &Uah=0 — A,(a}) =0,



Hsp & Geometry II: massive theory

Spin 2: massive theory as
quadratic deformation of the geometric theory:

» Spin 2 [Fierz-Pauli]

1 1
ﬁ(m = O) = Eh'uy (R/U/ _ 57,’/uw R)
1 1
L(m) = Ehuv{(RW - 577/”“/ R) —m? (A" — "™ he) }
8-8;250 Fierz—Pauli mass term

» Spin s: | General idea: higher traces should appear in the mass term|, s.t.

1
£=§go{8¢(a1,...ak,...) — m?M,} where M¢=Z)\knkgo[k],

g

generalised FFP mass term

» Fronsdal : 9-{F —inF'} # 0 = need for auxiliary fields;
» Differently, for all geometric Einstein tensors £, we have 9-&, = 0|
» Indeed it is possible to define a consistent massive theory with

1 1
— . I 2 =3 n [n].
M, Y —Nne n- e 377 ¥ (2n — 3)!!77 ¥

No auxiliary fields are needed [D.F., 2007, 2008]




We found consistent formulations for unconstrained hsp

on the other hand:

» Using curvatures — non-localities;

» Minimal local Lagrangians — higher-derivatives: ~ o 02«

» BRST approach(*): to describe spin s — O(s) auxiliary fields

intrinsic complication of the unconstrained approach?

)[Pashnev - Tsulaia - Buchbinder et al. 1997, ...]



Unconstrained hsp without higher derivatives

There is a simple, alternative interpretation of the minimal local Lagrangians:

» Consider the Fronsdal Lagrangian, together with a multiplier for ¢":

1
L= ¢(F — 577F’) + B¢”
L is gauge-invariant under do = 9\, 63 =0-0-0- A, with A/ =

» Perform the Stueckelberg substitution
o — ¢ —00
obtaining an unconstrained Lagrangian, gauge invariant under
dp = ON; 50 = A
with an unconstrained parameter A.

» Only the trace of 6 appears in £ (after a redefinition of 3)so that, defining
0’ = o we recover the minimal Lagrangian

o = 2 (4= 2aa) 3 (oo ()0



Unconstrained hsp without higher derivatives

Two basic observations:

» higher-derivative terms are simply due to the different dimensions of 6
w.rt. ping — ¢ — 060,

» Under this substitution any function of ¢ would be (trivially) gauge-invariant.
This is too much!
What we want is to extend to the unconstrained level

a constrained gauge symmetry already present in the Lagrangian

In this sense, maybe it is possible to improve the Stueckelberg idea.



Appendix III: Unconstrained hsp without higher derivatives

} o4

»

[see also Buchbinder, Galajinsky, Krykhtin '07]

In ¢ = ON separate traceless and trace parts of the parameter A:
A=A+ n AP,
AP N = (nA\P)’

introduce a new compensator 6,, s.t. 66, = 9AP (so 6, is not pure gauge)

perform in £ the substitution

¢ — ¢ —nby

where ¢ — 16, transforms as the ‘old’ Fronsdal field.

The corresponding “Ricci tensor” (and generalisations thereof)
A,g = F — (D+25—-6)0%60 — nFy,

is the building-block of unconstrained Lagrangians, with a minimal con-
tent of auxiliary fields and no higher-derivatives

for bosons and fermions of any symmetry type

[D. F. 2007; A. Campoleoni - D. F. - J. Mourad - A. Sagnotti; 2008; 2009]



~ Perspectives ~

Still open issues on the free theory :
e hsSp supersymmetry multiplets; e Quantization;

e Dualities; ° ...

whether or not allowing for a wider gauge symmetry might prove to be truly
important, only a deeper insight into interactions will tell

still, unconstrained formulation is technically simpler (no need to project), and
more flexible (more gauge fixings allowed )

&9
To go beyond

Quartic interactions :

e For spin 1 (YM) and spin 2 (EH) cubic vertex implies full Lagrangian;

e for higher spins nothing known about quartic couplings;, but ‘“proper”
hsp features from quartic coupling onwards:

maybe worth the effort to try and overcome the ‘“cubic” barrier



Appendix: Hsp geometry & current exchanges, m = 0O

Are all the geometrical Einstein tensors really equivalent?

» Propagator from Lagrangian equation with an external current:

Eo(ar,y..cap, ...) =J =  ¢=G(a,...ap...) T

» Current exchange J - = J -G - J — consistency conditions on the
polarisations flowing:

almost all geometric theories give the wrong result, but one.
The correct theory has a simple structure:
=> The ‘Ricci’ tensor has the compensator form A, = F —3093~,;

.A:;EO

/
v O, and the Lagrangian is

= It satisfies the identities : {

1 1
L=2Z¢(Ae—onAL +0°By) — 0T

[ D.F. - J. Mourad - A. Sagnotti, 2007]



Appendix: Hsp geometry & current exchanges, m # 0O

»

} o4

Consider the family of Lagrangians, for spin 4:

1

[D.F. 2007, 2008]

L(m) =S¢y (a1, a2) — m?* My} — ¢ - T,

where 7 is a conserved current:

The divergence of the eom

0-J = 0.

8-{€,(a1,a2) —m*(p —ne' —n?p")}} =0-J =0,

implies the same consequences as in the absence of 7.

Actually, Vai,a> the eom reduce to

Op — G =3&e" —m?(p—ne' —n’¢") =7,

where a1,a> disappeared; computing the product 7 - J:

(1) only surviving contribution from the family of Einstein tensors is O ¢

(2) full structure of the propagator encoded in the coefficients of M,

Inverting the equation of motion we find the correct result

T ==

1

e G A

6
D+ 3

J'-

J' 4+

3

(D+1)(D+3)

Jl/ . Jl/}



Hsp geometry: uniqueness of mass deformation

The same mass term M, generates infinitely many consistent massive theories.

issue of uniqueness
I. » Origin of the Fierz-Pauli mass-term, for s = 2: KK reduction (0 — 0O —m?):
Ruw — 2w R ~ O(h —nh') + ...,

A similar mechanism for M,7

» For each Einstein tensor £,(a1,...,ax) it is unambiguously defined the “pure massive”
contribution of the reduction, neglecting singularities from % — ﬁ:

Epar,.. ar) ~ O(p + kine' + kan?¢” +...) + ...,

where k; = k; (a1,...,a;).

» [s it possible to find a geometric theory whose “box"” term encodes the coefficients of the
generalised FP mass term M7

Yes! Up to spin 11 (at least) it is just the unique theory with the correct current exchange.

II. » Why the mass term works well with all geometric Einstein tensors? Not too strange,
also true for spin 2: the non-local (wrong!) theory defined by the eom

1 02

R — Enu,,R + X(n — E)R —m?(h —nh') = Ty,

with T, conserved, reduces to the Fierz system, and gives the correct current exchange!



Appendix: Massive theory & Current exchanges

# Massive Lagrangians from massless ones — K-K reduction from D+ 1 to D

# Response of the theory to the presence of an external source J; unitarity : only
transverse, on-shell polarisations mediate the interaction between distant sources:

¥ ¥
J(x) k* ~ 0 I ()

tantamount to computing the propagator

€9

» Straightforward in flat bkg;

(pQ—mQ)j'SOZJ'j—DiIJ’-J’ m #= O

(generalisation to hsp of the vD\V/Z discontinuity)

» Less direct to describe (partially) massive (A)dS fields(*);

PPT o=0-0 377 m = 0
s = 3.
m2 2
(P2 =) T =TT = 3235t ity 7- 9" m # 0
(no vDVZ discontinuity for hsp on (A)dS)
Wp2 =0,-4L4 [D.F. - J. Mourad - A. Sagnotti, '07, '08]



