On unconstrained higher spins of any symmetry

Dario Francia

Université Paris VII - APC

4th International Sakharov Conference - Moscow, May 22, 2009

Introduction I

"Problems with higher spins are not problems with free theory"

True!

but still

Free theory not a closed subject

Introduction II: Free theory - symmetric tensors

"Canonical" description of *free, symmetric* higher-spin gauge fields via (Fang-) Fronsdal equations (1978):

ightharpoonup Bosons (\sim spin 2 \rightarrow $R_{\mu\nu}$ = 0) :

$$\mathcal{F}_{\mu_1 \dots \mu_s} \equiv \Box \varphi_{\mu_1 \dots \mu_s} - \partial_{\mu_1} \partial^{\alpha} \varphi_{\alpha \mu_2 \dots \mu_s} + \dots + \partial_{\mu_1} \partial_{\mu_2} \varphi^{\alpha}_{\alpha \mu_3 \dots \mu_s} + \dots = 0$$

- \Longrightarrow gauge invariant under $\delta \varphi = \partial \Lambda$ iff $\Lambda' (\equiv \Lambda^{\alpha}_{\alpha}) \equiv 0$;
- \Rightarrow Lagrangian description iff $\varphi''(\equiv \varphi^{\alpha\beta}_{\alpha\beta}) \equiv 0$.
- ightharpoonup Fermions ($\sim spin \frac{3}{2} \rightarrow \not \partial \psi_{\mu} \gamma_{\mu} \psi = 0$):

$$S_{\mu_1 \dots \mu_s} \equiv i \left\{ \gamma^{\alpha} \partial_{\alpha} \psi_{\mu_1 \dots \mu_s} - (\partial_{\mu_1} \gamma^{\alpha} \psi_{\alpha \mu_2 \dots \mu_s} + \dots) \right\} = 0$$

- $ilde{\Rightarrow}$ gauge invariant under $\delta \psi = \partial \epsilon$ iff $\neq 0$;
- ightharpoonup Lagrangian description iff $\psi'(\equiv \psi^{\alpha}_{\alpha}) \equiv 0$.

Generalisation to (spinor -) tensors of any symmetry type in

Labastida equations (1986 – 1989):

 \longrightarrow Bosons (2-families: $\varphi_{\mu_1\cdots\mu_s,\,\nu_1\cdots\nu_r}\equiv\varphi_{\,\mu_s,\,\nu_r}$):

$$\mathcal{F}_{\mu_{s},\nu_{r}} \equiv \Box \varphi_{\mu_{s},\nu_{r}} - \partial_{\mu} \partial^{\alpha} \varphi_{\alpha\mu_{s-1},\nu_{r}} - \partial_{\nu} \partial^{\alpha} \varphi_{\mu_{s},\alpha\nu_{r-1}} + \partial^{2}_{\mu} \cdots + \partial^{2}_{\nu} \cdots + \partial_{\mu} \partial_{\nu} \cdots = 0$$

⇒ gauge invariant under

$$\delta \varphi_{\mu_s,\nu_r} = \partial_\mu \Lambda^{(1)}_{\mu_{s-1},\nu_r} + \partial_\nu \Lambda^{(2)}_{\mu_s,\nu_{r-1}}$$

iff suitable <u>combinations</u> of <u>traces</u> of $\Lambda^{(1)}$ and $\Lambda^{(2)}$ vanish;

- \hookrightarrow Lagrangian description *iff* suitable <u>combinations</u> of <u>double traces</u> of φ_{μ_s,ν_r} vanish.
- \longrightarrow Fermions (2-families: $\psi^a_{\mu_1\cdots\mu_s,\,\nu_1\cdots\nu_r}\equiv\psi_{\mu_s,\,\nu_r}$):

$${\cal S}_{\mu_s,\,
u_r} \,\equiv\, i\,\{\gamma^{\,lpha}\,\partial_{\,lpha}\,\,\psi_{\,\mu_s,\,
u_r}\,-\,\partial_{\,\mu}\,\gamma^{\,lpha}\,\psi_{\,lpha\,\mu_{s-1},\,
u_r}\,-\,\partial_{\,
u}\,\gamma^{\,lpha}\,\psi_{\,\mu_s,\,lpha\,
u_{r-1}})\}\,=\,0$$

⇒ similar constraints, but <u>no Lagrangian description available</u> for the general case

Constraints

 \longleftrightarrow

keep to a minimum the number of off-shell components

>> Consider the equations of motion for open String Field Theory

$$Q|\Phi\rangle = 0$$
,

where Q is the BRST charge, and evaluate the limit $\alpha' \to \infty$; [Bengtsson, Henneaux-Teitelboim, Lindström, Sundborg, D.F.-Sagnotti, Sagnotti-Tsulaia, Lindström-Zabzine, Bonelli, Savvidy, Buchbinder-Fotopoulos-Tsulaia-Petkou, . . .]

 \rightarrow Actually, by restricting the attention *e. g.* to totally symmetric tensors it is possible to show that this equation splits into a series of *triplet* equations:

$$\Box \varphi = \partial C , \qquad \delta \varphi = \partial \Lambda ,$$

$$\Box C = \partial \cdot \varphi - \partial D , \qquad \delta C = \Box \Lambda ,$$

$$\Box D = \partial \cdot C , \qquad \delta D = \partial \cdot \Lambda$$

where φ is the spin-s field, describing the propagation of spins $s, s-2, s-4, \ldots$

with more off-shell components than $\sim \sum$ (Fronsdal).

[Extension of triplets to irreducible spin $s \to Buchbinder$ -Galajinski-Krykhtin 2007; frame-like analysis for reducible & irreducible cases \to Sorokin-Vasiliev 2008]

For Maxwell, Yang-Mills (spin 1) and Einstein (spin 2) theories

the curvature :
$$\begin{cases} A_{\mu} \rightarrow F_{\mu\nu} \sim \partial A \\ h_{\mu\nu} \rightarrow \mathcal{R}_{\mu\nu,\rho\sigma} \sim \partial^2 h \end{cases}$$

central to provide a *geometrical understanding of the dynamics*

 \sim

Do they exist analogous tensors for hsp?

Yes, at least at the linear level.

[de Wit-Freedman '80]

$$\varphi_{\mu_1...\mu_s} \longrightarrow \mathcal{R}_{\mu_1...\mu_s; \nu_1...\nu_s} \sim \partial^s \varphi$$
s.t.

$$\delta\,\mathcal{R}_{\mu_1\dots\mu_s;\,\nu_1\dots\nu_s}\equiv\,0$$
 under
$$\delta\varphi_{\mu_1\dots\mu_s}=\partial_{\mu_1}\Lambda_{\mu_2\mu_3\dots\mu_s}\,+\,\partial_{\mu_2}\Lambda_{\mu_1\mu_3\dots\mu_s}\,+\,\dots$$

for unconstrained gauge fields and gauge parameters

Three questions

I. Lagrangian description for fermions of mixed symmetry?

II. Unconstrained Lagrangians for bosons and fermions?

III. Any role for curvatures in the dynamics?

Appendix: unconstrained Lagrangians & Stueckelberg symmetries

(Unconstrained) Lagrangians for bosons & fermions of any symmetry

Fronsdal

Unconstrained

$$\mathcal{F}$$
 s. t. $\delta \mathcal{F} = 3 \partial^3 \Lambda'$ $\mathcal{A} \equiv \mathcal{F} - 3 \partial^3 \alpha \rightarrow \begin{cases} \delta \alpha = \Lambda', \\ \delta \mathcal{A} = 0. \end{cases}$ $\mathcal{F} = 0$ $\mathcal{A} = 0$ $\mathcal{L}_{\varphi'' \equiv 0} = \frac{1}{2} \varphi \left(\mathcal{F} - \frac{1}{2} \eta \mathcal{F}' \right)$ $\mathcal{L} = ?$

69

Basic ingredient: the Bianchi identity:

$$\partial \cdot \mathcal{A} - \frac{1}{2} \partial \mathcal{A}' \equiv -\frac{3}{2} \partial^3 \underbrace{(\varphi'' - \partial \cdot \alpha - \partial \alpha')}_{\equiv \mathcal{C}}$$

compare with gravity

$$\partial^{\,\alpha}\mathcal{R}_{\,\alpha\mu}\,-\,rac{1}{2}\,\partial_{\,\mu}\mathcal{R}\,\equiv\,0$$

$$\mathcal{L}(\varphi,\alpha,\beta) = \frac{1}{2}\varphi\left(\mathcal{A} - \frac{1}{2}\eta\mathcal{A}'\right) - \frac{3}{4}\binom{s}{3}\alpha\partial\cdot\mathcal{A}' - 3\binom{s}{4}\beta\mathcal{C},$$

unconstrained Lagrangians for any spin s

[D. F. - A. Sagnotti 2005, 2006]

Generalisation to (A)dS: [A. Sagnotti - M. Tsulaia '03; D. F. - J. Mourad - A. Sagnotti, '07]

[A. Campoleoni - D. F. - J. Mourad - A. Sagnotti, 2008]

Here: Two-family fields $arphi_{\mu_1 \ldots \mu_{s_1}}$; $u_1 \ldots
u_{s_2}$

$$\text{Notation:} \begin{cases} \varphi_{\mu_1 \dots \, \mu_{s_1}; \, \nu_1 \dots \, \nu_{s_2}} & \to & \varphi \,, \\ \partial_{(\,\mu_1^i|\,\, \varphi_{\dots; \, |\, \mu_2^i \dots \, \mu_{s_i+1}^i) \,; \, \dots} & \to & \partial^i \, \varphi \,, \quad \text{upper indices} \leftrightarrow \text{added indices} \\ \partial^{\,\lambda} \, \varphi_{\dots; \, \lambda \, \mu_2^i \dots \, \mu_{s_i}^i \,; \, \dots} & \to & \partial_i \, \varphi \,, \\ \varphi_{\dots; \, \lambda \, \mu_2^i \dots \, \mu_{s_i}^i \,; \, \dots \, \lambda \, \mu_2^j \dots \, \mu_{s_j}^j \,; \, \dots} & \to & T_{ij} \, \varphi \,. \end{cases}$$

Families of symmetric indices \longrightarrow reducible ql(D) tensors

 \sim

Basic constrained theory: [Labastida 1986, 1989]

$$\mathcal{F} = \Box \varphi - \partial^i \partial_i \varphi + \frac{1}{2} \partial^i \partial^j T_{ij} \varphi = 0,$$

- ightharpoonup gauge invariant under $\delta \varphi = \partial^i \Lambda_i$ iff $T_{(ij} \Lambda_{k)} \equiv 0;$ ightharpoonup Lagrangian description iff $T_{(ij} T_{kl)} \varphi = 0.$ Lagrangian description
 - → not all traces vanish;
 - the constraints are not independent.

Basic unconstrained kinetic tensor:

$$\left| A = \mathcal{F} - \frac{1}{2} \partial^i \partial^j \partial^k \alpha_{ijk} \right|,$$

But, due to linear dependence of constraints

$$\begin{cases} \alpha_{ijk} \equiv \alpha_{ijk}(\Phi) = \frac{1}{3} T_{(ij} \Phi_{k)}, \\ \delta \Phi_k = \Lambda_k. \end{cases}$$

 \sim

To construct the Lagrangian \rightarrow resort to *Bianchi identity*:

$$\partial_{i} \mathcal{A} - \frac{1}{2} \partial^{j} T_{ij} \mathcal{A} = -\frac{1}{4} \partial^{j} \partial^{k} \partial^{l} \mathcal{C}_{ijkl}$$
$$\mathcal{C}_{ijkl} = T_{(ij} T_{kl)} \varphi + \mathcal{C}_{ijkl} (\alpha)$$

As for symm case, take care of terms in $\propto C_{ijkl}$ via a Lagrange multiplier β :

$$\mathcal{L} = \frac{1}{2} \langle \varphi, E_{\varphi} \rangle + \frac{1}{2} \langle \Phi_i, (E_{\Phi})_i \rangle + \frac{1}{2} \langle \beta_{ijkl}, (E_{\beta})_{ijkl} \rangle$$

where in particular the e.o.m. for φ , gauge fixing $\alpha_{ijk} = \frac{1}{3} T_{(ij} \Phi_{k)}$ to zero, is

$$E_{\varphi} = \mathcal{E}_{\varphi} + \frac{1}{2} \eta^{ij} \eta^{kl} \mathcal{B}_{ijkl} = 0,$$

$$\mathcal{E}_{\varphi} = \mathcal{F} - \frac{1}{2} \eta^{ij} T_{ij} \mathcal{F} + \frac{1}{36} \eta^{ij} \eta^{kl} \left(2 T_{ij} T_{kl} - T_{i(k} T_{l)j} \right) \mathcal{F}.$$

[A. Campoleoni - D. F. - J. Mourad - A. Sagnotti, 2009]

The basic kinematical setting of Labastida [1987]

$$\begin{cases} \mathcal{S} = i \left(\partial \psi - \partial^{i} \psi_{i} \right) = 0, \\ \delta \psi = \partial^{i} \epsilon_{i}, \\ T_{(ij} \psi_{k)} = 0; \ \gamma_{(i} \epsilon_{j)} = 0, \end{cases}$$

can be easily turned to its unconstrained counterpart:

$$\begin{cases} \mathcal{W} = \mathcal{S} + i \partial^i \partial^j \xi_{ij} = 0, \\ \delta \psi = \partial^i \epsilon_i, \\ \xi_{ij} (\Psi) = \frac{1}{2} \gamma_{(i} \Psi_{j)}, \\ \delta \Psi_i = \epsilon_i, \end{cases}$$

BUT, in the constrained setting, no Lagrangian available for fermions;

Using the Bianchi identity (here constrained theory, for simplicity)

$$\partial_i \mathcal{S} - \frac{1}{2} \not \partial \gamma_i \mathcal{S} - \frac{1}{2} \partial^j T_{ij} \mathcal{S} - \frac{1}{6} \partial^j \gamma_{ij} \mathcal{S} = \frac{i}{2} \partial^j \partial^k T_{(ij} \gamma_{k)} \psi$$

it is possible to find the complete Lagrangian, for N-family fields, in the form

$$\begin{cases} \mathcal{L} = \frac{1}{2} \langle \bar{\psi}, \sum_{p,q=0}^{N} k_{p,q} \eta^{p} \gamma^{q} (\gamma^{[q]} \mathcal{S}^{[p]}) \rangle + \text{h.c.}, \\ k_{p,q} = \frac{(-1)^{p+\frac{q(q+1)}{2}}}{p! \, q! \, (p+q+1)!} . \end{cases}$$

Unconstrained higher spins & geometry

Generalisation of geometric equations for spin 1 et spin 2:

[D.F. - A. Sagnotti, 2002, D.F. - J. Mourad - A. Sagnotti, 2007]

$$spin 1$$
 (Maxwell): $\partial^{\alpha} F_{\alpha,\mu} = 0$

$$spin 2$$
 (Einstein): $\eta^{\alpha\beta} \mathcal{R}_{\alpha\mu,\beta\nu} = 0$

$$spin 3$$
: $A_{\varphi} \equiv \frac{1}{\Box} \partial^{\alpha} \mathcal{R}^{\beta}{}_{\beta\alpha,\,\mu\nu\rho} = 0$

 \rightarrow (Consistency :) the equation $\mathcal{A}_{\varphi}=0$ always implies the compensator equation

$$\mathcal{A}_{\varphi} = 0 \rightarrow \mathcal{F} - 3\partial^{3}\alpha_{\varphi} = 0$$
, with $\delta\alpha_{\varphi} = \Lambda'$

 $ightharpoonup (Lagrangian :) \ orall \ "Ricci tensor" \ \mathcal{A}_{\varphi}(\{a_k\}) \ identically \ divergenceless Einstein tensors \ \mathcal{E}_{\varphi}(\{a_k\}) \ \text{s.t.}$

$$\mathcal{L} = \frac{1}{2} \varphi \, \mathcal{E}_{\varphi} \left(\{ a_k \} \right) \longrightarrow \mathcal{E}_{\varphi} \left(\{ a_k \} \right) = 0 \longrightarrow \mathcal{A}_{\varphi} \left(\{ a_k \} \right) = 0 \,,$$

Spin 2: massive theory as

quadratic deformation of the geometric theory:

>> Spin 2 [Fierz-Pauli]

$$\mathcal{L}(m=0) = \frac{1}{2} h_{\mu\nu} \left(\mathcal{R}^{\mu\nu} - \frac{1}{2} \eta^{\mu\nu} \mathcal{R} \right)$$

$$\mathcal{L}(m) = \frac{1}{2} h_{\mu\nu} \left\{ \underbrace{\left(\mathcal{R}^{\mu\nu} - \frac{1}{2} \eta^{\mu\nu} \mathcal{R} \right) - m^2}_{\partial \cdot \mathcal{E}_{s=2} \equiv 0} \underbrace{\left(h^{\mu\nu} - \eta^{\mu\nu} h^{\alpha}_{\alpha} \right)}_{Fierz-Pauli\ mass\ term} \right\}$$

>> Spin s: General idea: higher traces should appear in the mass term, s.t.

$$\mathcal{L} = \frac{1}{2} \varphi \left\{ \mathcal{E}_{\varphi} \left(a_1, \dots a_k, \dots \right) - m^2 M_{\varphi} \right\} \quad \text{where} \quad \underbrace{M_{\varphi} = \sum_{\varphi} \lambda_k \eta^k \varphi^{[k]}}_{generalised \ FP \ mass \ term},$$

- **▶** Fronsdal : $\partial \cdot \{\mathcal{F} \frac{1}{2}\eta \mathcal{F}'\} \neq 0$ ⇒ need for *auxiliary fields*;
- ightharpoonup Differently, for all geometric Einstein tensors \mathcal{E}_{φ} we have $\partial \cdot \mathcal{E}_{\varphi} \equiv 0$!
- >> Indeed it is possible to define a consistent massive theory with

$$M_{\varphi} = \varphi - \eta \varphi' - \eta^{2} \varphi'' - \frac{1}{3} \eta^{3} \varphi''' - \cdots - \frac{1}{(2n-3)!!} \eta^{n} \varphi^{[n]}.$$

No auxiliary fields are needed

[D.F., 2007, 2008]

We found consistent formulations for unconstrained hsp

on the other hand:

- → Using curvatures → non-localities;
- ▶ Minimal local Lagrangians → higher-derivatives: $\sim \alpha \square^2 \alpha$
- \rightarrow BRST approach (*): to describe spin $s \rightarrow \mathcal{O}(s)$ auxiliary fields

 \longrightarrow

intrinsic complication of the unconstrained approach?

(*)[Pashnev - Tsulaia - Buchbinder et al. 1997, ...]

There is a simple, alternative interpretation of the minimal local Lagrangians:

 \rightarrow Consider the Fronsdal Lagrangian, together with a multiplier for ϕ'' :

$$\mathcal{L} = \phi \left(\mathcal{F} - \frac{1}{2} \eta \mathcal{F}' \right) + \beta \phi''$$

 \mathcal{L} is gauge-invariant under $\delta \varphi = \partial \lambda$, $\delta \beta = \partial \cdot \partial \cdot \partial \cdot \lambda$, with $\lambda' = 0$

Perform the Stueckelberg substitution

$$\phi \rightarrow \varphi - \partial \theta$$

obtaining an unconstrained Lagrangian, gauge invariant under

$$\delta \varphi = \partial \Lambda; \qquad \delta \theta = \Lambda$$

with an *unconstrained* parameter Λ .

ightharpoonup Only the trace of heta appears in \mathcal{L} (after a redefinition of eta)so that, defining $heta'\equiv lpha$ we recover the minimal Lagrangian

$$\mathcal{L}(\varphi,\alpha,\beta) = \frac{1}{2}\varphi\left(\mathcal{A} - \frac{1}{2}\eta\mathcal{A}'\right) - \frac{3}{4}\binom{s}{3}\alpha\partial\cdot\mathcal{A}' - 3\binom{s}{4}\beta\mathcal{C}$$

Two basic observations:

- ightharpoonup higher-derivative terms are simply due to the different dimensions of θ w.r.t. φ in ϕ \to φ ∂ θ ;
- ightharpoonup Under this substitution any function of ϕ would be (trivially) gauge-invariant.

This is too much!

What we want is to *extend* to the unconstrained level a constrained gauge symmetry already present in the Lagrangian

In this sense, maybe it is possible to improve the Stueckelberg idea.

[see also Buchbinder, Galajinsky, Krykhtin '07]

 \rightarrow In $\delta \phi = \partial \Lambda$ separate *traceless* and *trace* parts of the parameter Λ :

$$\Lambda = \Lambda^t + \eta \Lambda^p,$$

$$\Lambda^p : \Lambda' = (\eta \Lambda^p)'$$

- \rightarrow introduce a new compensator θ_p , s.t. $\delta \theta_p = \partial \Lambda^p$ (so θ_p is not pure gauge)
- \rightarrow perform in \mathcal{L} the substitution

$$\phi \rightarrow \varphi - \eta \theta_p$$

where $\varphi - \eta \theta_p$ transforms as the 'old' Fronsdal field.

The corresponding "Ricci tensor" (and generalisations thereof)

$$A_{\varphi,\theta} = \mathcal{F} - (D + 2s - 6) \partial^2 \theta - \eta \mathcal{F}_{\theta},$$

is the building-block of *unconstrained Lagrangians*, with a *minimal* content of auxiliary fields and *no higher-derivatives*

for bosons and fermions of any symmetry type

[D. F. 2007; A. Campoleoni - D. F. - J. Mourad - A. Sagnotti; 2008; 2009]

\sim Perspectives \sim

Still open issues on the *free theory*:

- hsp supersymmetry multiplets;
 Quantization;
- Dualities;...

whether or not allowing for a wider gauge symmetry might prove to be truly important, only a deeper insight into interactions will tell

still, unconstrained formulation is technically simpler (no need to project), and more flexible (more gauge fixings allowed)

To go beyond

Quartic interactions:

- For spin 1 (YM) and spin 2 (EH) cubic vertex implies full Lagrangian;
- for higher spins *nothing known about quartic couplings*; *but* "proper" hsp features from quartic coupling onwards:

maybe worth the effort to try and overcome the "cubic" barrier

Are all the geometrical Einstein tensors really equivalent?

>> Propagator from Lagrangian equation with an external current:

$$\mathcal{E}_{\varphi}(a_1, \dots a_k \dots) = \mathcal{J} \quad \Rightarrow \quad \varphi = \mathcal{G}(a_1, \dots a_k \dots) \cdot \mathcal{J}$$

Current exchange $\mathcal{J} \cdot \varphi = \mathcal{J} \cdot \mathcal{G} \cdot \mathcal{J} \rightarrow$ consistency conditions on the polarisations flowing:

almost all geometric theories give the wrong result, but one.

The correct theory has a simple structure:

- \rightarrow The 'Ricci' tensor has the compensator form $\mathcal{A}_{\varphi} = \mathcal{F} 3 \partial^3 \gamma_{\varphi}$;
- ightharpoonup It satisfies the identities : $\begin{cases} \partial \cdot \mathcal{A}_{\varphi} \frac{1}{2} \partial \mathcal{A}_{\varphi}' \equiv 0 \\ \mathcal{A}_{\varphi}'' \equiv 0 \end{cases}$, and the Lagrangian is

$$\mathcal{L} = \frac{1}{2} \varphi \left(\mathcal{A}_{\varphi} - \frac{1}{2} \eta \mathcal{A}_{\varphi}' + \eta^{2} \mathcal{B}_{\varphi} \right) - \varphi \cdot \mathcal{J}$$

➤ Consider the family of Lagrangians, for spin 4: [D.F. 2007, 2008]

$$\mathcal{L}(m) = \frac{1}{2} \varphi \left\{ \mathcal{E}_{\varphi} \left(a_1, a_2 \right) - m^2 M_{\varphi} \right\} - \varphi \cdot \mathcal{J},$$

where \mathcal{J} is a *conserved* current: $\partial \cdot \mathcal{J} = 0$.

The divergence of the eom

$$\partial \cdot \{\mathcal{E}_{\varphi}(a_1, a_2) - m^2(\varphi - \eta \varphi' - \eta^2 \varphi'')\} = \partial \cdot \mathcal{J} = 0,$$

implies the same consequences as in the absence of \mathcal{J} .

 \rightarrow Actually, $\forall a_1, a_2$ the eom reduce to

$$\Box \varphi - \frac{\partial^2}{\Box} \varphi' - 3 \frac{\partial^4}{\Box^2} \varphi'' - m^2 (\varphi - \eta \varphi' - \eta^2 \varphi'') = \mathcal{J},$$

- \longrightarrow where a_1, a_2 disappeared; computing the product $\mathcal{J} \cdot \mathcal{J}$:
 - (1) only surviving contribution from the family of Einstein tensors is $\Box \varphi$
 - (2) full structure of the propagator encoded in the coefficients of M_{φ}
- >> Inverting the equation of motion we find the correct result

$$\mathcal{J} \cdot \varphi = \frac{1}{p^2 - m^2} \{ \mathcal{J} \cdot \mathcal{J} - \frac{6}{D+3} J' \cdot J' + \frac{3}{(D+1)(D+3)} J'' \cdot J'' \}$$

Appendix: Hsp geometry: uniqueness of mass deformation

The same mass term M_{φ} generates *infinitely many* consistent massive theories.

 \longrightarrow

issue of uniqueness

I. \Longrightarrow Origin of the Fierz-Pauli mass-term, for s=2: KK reduction ($\square \to \square - m^2$):

$$\mathcal{R}_{\mu\nu} - \frac{1}{2} \eta_{\mu\nu} \mathcal{R} \sim \Box (h - \eta h') + \ldots,$$

A similar mechanism for M_{φ} ?

For each Einstein tensor $\mathcal{E}_{\varphi}(a_1,\ldots,a_k)$ it is unambiguously defined the "pure massive" contribution of the reduction, neglecting singularities from $\frac{1}{\Box} \to \frac{1}{\Box - m^2}$:

$$\mathcal{E}_{\varphi}(a_1,\ldots,a_k) \sim \Box \left(\varphi + k_1 \eta \varphi' + k_2 \eta^2 \varphi'' + \ldots\right) + \ldots,$$

where $k_i = k_i(a_1, \ldots, a_k)$.

Is it possible to find a geometric theory whose "box" term encodes the coefficients of the generalised FP mass term M_{φ} ?

Yes! Up to spin 11 (at least) it is just the unique theory with the correct current exchange.

II. >> Why the mass term works well with all geometric Einstein tensors? Not too strange, also true for spin 2: the non-local (wrong!) theory defined by the eom

$$\mathcal{R}_{\mu\nu} - \frac{1}{2} \eta_{\mu\nu} \mathcal{R} + \lambda \left(\eta - \frac{\partial^2}{\Box} \right) \mathcal{R} - m^2 \left(h - \eta h' \right) = T_{\mu\nu},$$

with $T_{\mu\nu}$ conserved, reduces to the Fierz system, and gives the correct current exchange!

Appendix: Massive theory & Current exchanges

- * Massive Lagrangians from massless ones \rightarrow K-K reduction from D+1 to D
- * Response of the theory to the presence of an external source \mathcal{J} ; unitarity: only transverse, on-shell polarisations mediate the interaction between distant sources:

tantamount to computing the propagator

69

Straightforward in flat bkg;

$$s = 3: \begin{cases} p^2 \mathcal{J} \cdot \varphi = \mathcal{J} \cdot \mathcal{J} - \frac{3}{D} \mathcal{J}' \cdot \mathcal{J}' & m = 0 \\ (p^2 - m^2) \mathcal{J} \cdot \varphi = \mathcal{J} \cdot \mathcal{J} - \frac{3}{D+1} \mathcal{J}' \cdot \mathcal{J}' & m \neq 0 \end{cases}$$

(generalisation to hsp of the vDVZ discontinuity)

▶ Less direct to describe (partially) massive (A)dS fields^(*);

$$s = 3: \begin{cases} P_L^2 \mathcal{J} \cdot \varphi = \mathcal{J} \cdot \mathcal{J} - \frac{3}{D} \mathcal{J}' \cdot \mathcal{J}' & m = 0 \\ (P_L^2 - m^2) \mathcal{J} \cdot \varphi = \mathcal{J} \cdot \mathcal{J} - 3 \frac{m^2 L^2 + D + 1}{(D+1)(m^2 L^2 + D)} \mathcal{J}' \cdot \mathcal{J}' & m \neq 0 \end{cases}$$

(no vDVZ discontinuity for hsp on (A)dS)

$$(*)P_L^2 = \Box_L - 4\frac{D}{L^2}$$
 [D.F. - J. Mourad - A. Sagnotti, '07, '08]