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H.Weyl, Raum, Zeit, Materie (Transl. from 1921 edition.) |

¥ = (G +al) + 5 /g{1 - B(hig9}
ik
Fi= ' | + 43000 + 8o — gug).

Thus, by mneglecting the exceedingly small cosmological terms, we

arrive exactly at the classical Maxwell-Einstein theory of electricity

and gravitation. To make the expression correspond exactly with
&2

that of § 84 we must set 5 = A. Hence our theory necessarily

1. -
gives us Einstein’s cosmological term A vg. The uniform dis-

tribution of electrically neutral matter at rest over the whole of
(spherical) space is thus a state of equilibrium which is compatible
with our law. But, whereas in Einstein’s Theory (cf. § 34) there
must be a pre-established harmony between the universal physical
constant A that occurs in it, and the total mass of the earth (because
each of these quantities in themselves already determine the cur-
vature of the world), here (where A denotes merely the curvature),
we have that the mass present in the world determines the
curvature. It seems to the author that just this is what makes
Einstein’s cosmology physically possible. In the case in which a
physical field is present, Einstein’s cosmological term must be

3. -
supplemented by the further term — A \/g(¢i¢*); and in the com-



Eddington’s ideas

;

In 1919 Eddington proposed a more radical modification of general relativity [7],
[5]. His idea was to start with the pure affine formulation of the gravitation, i.e. using
first the general symmetric afine connection and only at some later stage introducing
a metric tensor. Indeed, the curvature tensor can be defined without metrie:

??;ﬂim == .%ri,m. g Fﬂ.l T kai F::!.m EE' (1)

Then the Ricei-like (but non-symmetric) curvature tensor can be defined by contracting
the indices 7, m (or, i,[):
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(let us stress once more that Ty =TT but ryy = ri).



Invariants and interpretation

In particular, Eddington discussed different sorts of tensor densities, e.g..

L= \/—det-(rk;J =3/ g (3)

which resembles the fundamental scalar density of the Riemannian geometry,
V—=det(gr) = V—g. Eddington suggested to identify the symmetric part of rg with
the metric tensor. The anti-symmetric part,

| —

O = ol —Timp)s Pk + Gmp + Pmip =0, 4)
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strongly resembles the electro-magnetic field tensor and it seems natural to identify
it with this tensor, Eddington tried to write consistent equations of the generalized
theory but this problem was solved only by Einstein.



Einstein in Berlin

The first
paper

K OBIMEil TEOPHH OTHOCHTENLHOCTH ¢

§ 1. O6masa sacrs., BeiBoj ypaBHEHHS HOJH

MaremaTngeckoe mocTpoeHme o0meil TEOPHH OTHOCHTEIBHOCTH IEePBOHA-
9aJIbHO GHIO HOJHOCTEI0 OCHOBAHO HA MeTPHKe, T. €. HA HHBapHAaHTe

ds® = g,y dz, dz,. (1)

Benmuunn g,, m mx IpomsBOgHHE H300pasKaIl METPHIECKOE, & TAKKe Tpa-
BATANHOHHOE HoJie. HanpoTup, KOMIOHEHTH DJIEKTPHIECKOTO MONA OCTABAINCH
10 OTHOIIEHMIO K HAM COBEPIICHHO Ty;KepoxmuhMu. sHesaHue cBecTH rpaBHTa-
NMOHHO® W 3JIEeKTPOMAarHUTHOE IOJA B OJHO €IWHOE IO CBOeH CYI[HOCTH IOJIe
B IOCHeqHAe TONH BJIajeeT yMaMH TE€OPETHKOB.

Hagcrpeuy sTuM cTpeMileHMAM HOET MaTeMaTH4ecKoe OTKPHTHE, CHeJaH-
Hoe JleBu-UmBuroir m Beitnem: Temsop KpubBusHH PmMaHa, mMelomuilt ¢yHOa-
MeHTaJILHOe 3HAYEHMEe MJadA ofmeil TeOpHH OTHOCHTEJIBLHOCTH, HamboJee ecTe-

CTBEHHHIM ITYTEM MOXKHO HOJIYYATH C MOMOMbIO 3aKOHA «HapaJeJbHOr0 mepe-
HOCa» BeKTOPOB («apduHHAA CBA3LY):

dA" = ——-P‘;QAOL de. (2)

I9T0T 3aKOH cBOUTCA K opmyie (1), eciay mOCTyIHpOBaTH, ITO JJIMHA BEK-
TOpa Ipu HapajjaelbHOM IEePeHoce He MeHAeTCA, OHAKO dTOT mar He SABJIAeT-
CA JIOTMYeCKH HeoOGXOmMmMEM. DBmepsne 3T0 00CTOATeNBCTBO O00HADPYKAII
I'. Beitnp, mocTpousmuil Ha HeM 0606mIeHIe PIMAHOBOI reOMETPHH, KOTOPOE, II0
€ro MHOHHIO, CONEpP;Kaj0 TeOPHWI0 5JIeKTPOMArHMTHOrO moxsa. Bei#as mpumaer
MHBAPMAHTHHHA CMBICI He JJIWHe JIMHEHHOTO 9JeMeHTAa MIH BEKTOpPa, & TOJMBLKO
OTHOIIEHMIO [JINH [BYX JUHEHAHHX 3JEMEHTOB MIM BEKTOPOB, MCXORANIAX N3
opHoil Toukm. ITapannenbnrit mepenoc (2) qolmeH OHTH TaKUM, 9TOGH 3T0 OT-

.......
- - L L)

* Zur allgemeinen Relativititstheorie. Sitzungsber. preuss. Akad. Wiss., phys.-math.
Kl., 1923, 32—38,.



CymecTByI0T TaKme TCH30pHEE INIOTHOCTH, KOTOPHE ABIAKWICA P a I| U 0-

HadbHHMHE (QYHKIUAMA BTOPOH CTeIeHHM IO BeawamHaM Ry ;n,; OHE Mo-
ryT GHTh DOJYYEHH C HOMONIBI0 TeH30PHOH IjIoTHOCTH O'FI™, KOMIOHEHTH Ko-
topoit paBHH 1 maim —1, B 3aBMCHUMOCTH OT TOTO0, 00Pa3YIOT MHNEKCH iklm der-

HYI0 WIK HeYeTHYI0 mepecTaHoBKY mudpp 1, 2, 3, 4. Taxoi TeHsopHO# mioT-
HOCTHIO ABISAETCA, HANpPHMEp,

1 k lmo=
R ’ lmRi, 016 .

OmHako # cYdTal0 NOPABHJABHEM OrPAHHUYHATHCA TAKHMH TEH30PHHIMH.
ILTOTHOCTAIMHA, KOTOPHE 00pasyloTca U3 CBEPHYTOr0 TeH30pa Ry Win U3 Beln-
uiH Sy A ¢y, DOCKOJIBKY MH MO;KeM IPHIABATh QUBMYECKHET CMHICI TONBKO
9TAM BejmumHaM. Torma ME JOMKHE TONYCKATH M MPPANAOHAJBHEE (YyHKINH,
K 4eMy MM YyKe ODHBHKIH B 00meH# TeopHH OTHOCHTEIBHOCTH (HAIpHMEp,

— g) .Ho B sTOM ciydae cymecTBYIOT eme Pa3jHYHEE BO3MOKHOCTH, U3
KOTOpPHIX Haubojee HHTEPECHOH HAM IIpefcTaBlgeTcA CIeXYIOmMAs:

$ =2V —|Rul. (10y

JT0 BHIpa)KeHHE, ABIAIEECH AHAIOIOM TEH30DHOH IIOTHOCTH HJIEMEHTa
obreMa, oOpaszoBaHO M3 BeauunH Ry Oe3 pacmeIJe-
HASA HAa CHMMETPHYHYW X AHTHCHMMETDPHUYHYWO Ua-
¢ T 4. Ecam sTta QyEKOASA I'aMHIBTOHA OKaKkeTCA XOPOmei, TO TeOpHA IPHUAET
UEeAJBHEM CIOCOO0M K 00BeMHEHMI0 TPABATANAM M DJIEKTPHYIECTBA B ONHO-




First paper — exposition of ideas

The starting point of Einstein in his first paper (72 in [1]) was to write the action
principle and to suppose (3) to be the Lagrangian density depending on 40 connection
functions ;. Varying the action w.r.t. these functions he derived 40 equations that
allowed him to find the general expression for I';; (the derivation is similar to that of
the standard general relativity):

1 1 | |
=508 (Skng + Sing — Skin) — S 1" + 5(5};"' i+ 0" ).

ad

o
=4
e

Here s is a symmetric tensor (s™" is the inverse matrix to gy), which Einstein in-
terpreted as the metric tensor (then the first term is the Christoftel symbol for this
metric), and i, is a vector which he tried to connect with the electro-magnetic field.



This identification apparently follows from the equations

| 3
ri = By + E[(%,z —ipg) + i) (6)
1 | 4
D = E(%,a — k) (7)

which can be obtained by inserting the expression (5) into (2). (4); Ry is the standard
Ricel eurvature tensor for the metric si;. Einstein's interpretation of o as the Maxwell
field is not so natural becanse of the term 4;7; in the r.h.s. of Eq.(6) which in fact makes
this interpretation impossible.



The Weyl - Einstein cOnnection

NB: The connection (5) is a special case of the general expression. The most
general symmetric affine connection has the form:

1
W =518 (Snkt + Sink = Skin) + 8 (Snkt + Sink — Skin)| (8)

=l

where s is an arbitrary symmetric tensor, s™" is inverse to sy, and s, is symmetric
in k and [. Both Weyl and Einstein connections correspond to:

Skin = € S in + B Sur i + S k) - (9

The Weyl-Einstein connection (defining the Weyl-Einstein spaces):

B =8 (Snkl Tt Sink — Skip) T O i+ 01" ig) — (@—28)sy ™). (10)

[

Einstein's connection: e = —f3 = % Weyl's connection: o =1, 4 =10.



The second paper

‘3

3AMEYAHHE K MOEH PABOTE
,J OBIEl TEOPHH OTHOCHTEJLHOCTHS *

[Toncrasnsas srpanenne (4) muaI' B dopmyay (2), moryuaeM ypaBHeENA MOJA:

{ [, 0i di
e =R+ ¢ [( 3;: ax;) T lklz] (13)

KOTOpHE IIOCHe PasNOKeHHA Ha CHMMETPUYHHIE W AHTHCHMMETDUYHEE YaCTH
NA0T ypaBHeHHs I'DABHTAIHOHHOr0 H 3JIEKTPOMATHHTHOIO moieil. 3pech Ry
mpefcTaBisgeT co00d PHEMAaHOBCKHME TeH30D KDHUBHSHE, 00pasoBAHHHH H3 Syt
KaK MeTpHYecKoro (yHJaMeHTAJLHOIO TeH30pa.

Ypasrenus (13) Moryr OWTh sammcaHN B (opMe IPUHIIHIA ['aMmTBTOHA

5 {S [- 2V =7 + m--ﬁ-eaﬁzazﬂ] dr} =0, (14)

re ® — crangpHas IIOTHOCTh PAMAHOBCKOM KPHBH3HK, oTHOCAmERCA K QyH-




The second paper ( no details for clarity’)

In the second paper Einstein proposes the effective Lagrangian density:

= —3'\/ det(rp, ) + k- S P (11)

This should be varied w.r.t. s and fi;, which are the tensor densities defined

with the aid of the scalar density /—det(s;) and corresponding to the tensors in
the decomposition,

PRl = Skl + Ol ; (12)

R is the scalar curvature density for the metric sp;. The Lagrangian (11) contains a
very complex term /—detr,,, which is more general than the so called Born-Infeld
Lagrangian proposed ten vears later M. Born (the first attempts to construct nonlinear
electro-dynamics were undertaken by G. Mie).




The third (final) original paper

The main idea of the very beautiful third paper (*Zur affinen Feldtheorie’) is to
take for the Lagrangian £ an arbitrary function of si; and ¢ . Then he infroduces the
Legendre transformation and the transformed (effective) Lagrangian density £*:

AL oL

i L
= M = fH, Sﬂ:.f:@! @MZW

Osy = Oy

(13)

k

[ntroducing the Riemann metric tensor gy and the 1*-vector,

F=g =", md™ = F=afM, (14)

he claims {without proof) that Eq.(5) is valid with s replaced by gy and thus the
affine geometry is the same for any L(sg. dy).



Finally, he uses the freedom in choosing £* (5™, M‘) and proposes:

i i 4
L = 20/~g - E.-'jfm ™, (15)

where a and [ are some constants not defined by the theory.

Then Einstein rewrites the Lagrangian so that the equations of motion can be
obtained by varying it in the metric and the vector field tensors, g;; and fi; . Neglecting
dimensions (h = ¢ = k = 1) and changing Einstein’s notation we write it as follows:

L= =g[R-2A - FyF* - m®ALA¥),  Fy= Ay - Ay (16)

Obviously, Ag is a nentral massive vector field with coupling to gravity only. We call
it vecton, that is an old fashioned but proper term for this ‘geometric” particle. This
particle has not been directly observed but it can be considered as one of the possible
candidates for dark matter. In view of the fact that the affine theory also predicted
the cosmological constant term which is one of the best candidates for explaining dark
energy. Einstein's theory may be considered as the first unified model of dark
energy and dark matter.



2 Spherica

| reduction - static and cosmological solutions

2.1 Vecton-dilaton gravity

At first sight, the theory (16) is very close to the well-understood Einstein-Maxwell

theory which can

be obtained when m = 0. However, we will show that the two

theories are qualitatively different and it is hardly possible to construct a reasonable

perturbation theory in the parameter m=.

2

The general spherically symmetric metric is (i, j = 0,1; 2" = t,2! = r):

Supposing that al

ds? = gii(t,7) dr'de) + o(t,r)(sin 8 df + do?). (17)

| other functions also depend on t,r, inserting the metric (17) into

the action with the Lagrangian (16), and integrating out the angle variables #, ¢ one

can derive the fol

owing effective two-dimensional Lagrangian

L9 = [~ v R® +2- 200 + () /20 - FFz'jFij - aﬁmgﬂiﬂﬂ- (18)



E-W model in D=4
L = /=g[R—2A — Fju F*" —m? A, A"
Spherical reduction:
ds* = gi;(t,r) de'dx? + @(t,r)(sin 0 dO + do?)
¥ = \/=glp R® +2 - 200+ (09)* /20 — p FiF7 — pm? A A']

Weyl -transformed Lagrangian

51(12) = =gy B& 299_1/2 — 2Ac,91/2 = 99_3/2 F?— ¢ '”?/2142]



Below we use the Weyl rescaled Lagrangian (gi; = ¢ 205

Ly = v=glpR® + 2072 - 2012 — 72 2 — o 4

The equations of motion in a generic metric g;; are equivalent to the Kinstein equations
for the spherically symmetric solutions. By varying w.r.t. the diagonal metric functions
g;; we fist write the energy and momentum constraints. In the light cone (LC| metric,
ds? = —4f(u, v) dudv, these constraints are:

The most important egs. are the CONSTRAINTS
fO; (B; 0/ f)] + mQAE =0, *=uv

that can be solved if the second term vanishes



Other EOM in the LC metric
00,0 + f(2p7M2 — 202 — 2 M2 FIE2) =0,
d; (¢ 3/2]“ 1F3J) :rnzAj 1,] = U,V
Fos = Ag o — By
Op(pAu) + OulpAy) = 0

"No spin zero’ condition in D=4

(Ludwig Lorenz condition)



2.2 Static states and horizons

Let us write the static equations corresponding to the naive reduction to one spatial
dimension, r = u + v, etc. To derive them one can reduce either the equations or the
Lagrangian. Define two additional functions, y and B

) =xr), A=) B0, (23)

where A,(r) = —Ay(r) = -A(r).

Then the other equations are

| ;
Y =-fU, B = —§g9m2A, f= (f/=fU+ @-77'L2A2], (24)

= 2(0~ 12 — Ap'/2 — ,=3/2g2)



Consider solutions near possible horizons
that are defined as zeroes of the metric, f — () for v — ¢
and expand them in powers of ¢ = ¢ — y.

~ Further analysis shows that A,
F'=f/x and A = A/y must be finite and thus:

EF'(p) = ¢ F(p) m* A%(p),

~ . 1 o~
X(p)=—F(@)U(p), B'(p)=—50m*Alp),

e e

A'(p)x(p) = F(o) [¢7**B(p) + U()A(¢)]

the prime denotes differentiation in .



v, Ao, By, Fp can be taken arbitrary up to one relation

}10 U[)—I—cpag/QBo:O,, UOEU(@O?BO).

This equation can be solved w.r.t any parameter.
It has two solutions for ¢y which means that
there may exist two horizons.

The solutions are the power series
expansions convergent near the horizons



Naive cosmological reduction
(to be corrected below!)

ds? = e2%dr? — e27dt?

L. = 6ke®tT — 662377 — QA3 4 426277 — 2 A2
the gauge fixing condition v = 0

f[—6f2 — 6k +2Af? + A% + m? A% = 0

Ry
o0
Il

the LC gauge a =~

—6f% — 6kf?+ 20+ A% + f2m*A* =0

<
I



Consistency of the reduction for the vecton

To have a

Eqs.(17) - {19) but written in the Einstein frame and in the (r,t) coordinates. The
main restrictions on the separated functions are given by the constraints and the
eqiations for t
ponts only.

here the main

consistent reduction we should check all the equations similar to

he vector field (analogous to (17) and (19)). Omitting details we give




Let us make the above statements more precise

(Corrections to the standard approach)

To get all spherically symmetric cosmological models we take the general spher-
ically symmetric metric

15 = e®dr — Pt + 2P dd 4 EE-SdQ% : (55)

where a, 3, 4, 0 depend on t and r. Then we separate the variables by the additive
Ansatz for the metric functions, a = ag(t)+a1(r), etc., and take A; depending only
on t.



All homogeneous isotropic cosmologies should satisfy the following necessary
conditions;

7 ! ol 2 =)/ 0l ol
a=0, 1=0, f"+ke¥P1=0, ke -36°-98"=C, (56)
where C is a constant proportional to the 3-curvature (its time dependence is given

by the factor ¢72%) and the third equation is the isotropy condition. Neglecting
inessential constant factors, we also have chosen ay =41 = 0.

For the SCALAR matter

Lo = 6ke®TT — 66%€3077 — QA3 4 23277 — p2y2ePotT



Reduction of the vecton equations -
additional conditions

[n the vecton model the equations for 4;(t.r) do give additional constraints
on (1y(r) and the effective Lagrangian (25) must be corrected to account for these
constraints and thus to be consistent with its higher-dimensional origin. These

e(]llELtIOHS dle.

2 _ap+vo+2061 41

do [Eﬂﬂﬂ “Ytaa) fil] — e

@1[8&” —Yo+201 fil] 2 3ag—yo+2054 Ap.

— e



Temporal notation

1 1

p=zlat2f), o=5(f-a),

Ay = e 2PH9(A% £ 227 4%), V=V (¥)+2A.

General E-W plus scalar Lagrangian

L) — 207 (?;;2 ~ Bp* + 652) O V()

Constraint

V2 —6p°2 +662+A_ +e2V =0



Equations of motion

A+ (p+46 —4)A+ P4 =0,

1 9 on
45+ 6p% — 4p% — 66° + §A_ +t — eV =0,

|
§+30p— % — 5 A~ =0.

; e Lo
Y+ (3p—9)Y + §52 Vg =0,



Approximate (model) Lagrangian
for the E-W cosmology

L. = -6 — 2Ae3TY + A% — pfA%et

ONLY MODEL!
Not giving exact solution for D=4



equations of motion in the LC gauge a = ~

f=fF, F+F+k= %Af? - émQAQ

A = B, B = —m2f?A

—6f°F* — 6kf” 4+ B° + 2Af* + m°f*A* =0

Similarly to our consideration of the static equations,
we change the independent variable to o = 1n f.



Then we have two equations
QF*%AN 4 (F*Y A! + 2m e“*A = 0

_ ; 4 1, .
(F?) = —2F% — 2k + §A62@ + §mi’A2

and the constraint
F2(6 — e72*A”) 4 6k — 2Ae”® — m?A%] =0

that are easy to solve in
the asymptotic region

o — —OC



®.0) = i

; 9 s . v

A= Z A e, F? =720+ Z F(2)gam
n=>0 - fi=2 -

(. Ap, A1 are arbitrary constants

9
T
— ) 5 A — A .
Al i \/6? Ag OT 4 40{}0 0 ;
1 L . ]
Aq = 1co _Emz Aé — k_ ;
> 1 2

Fé“') = EMQA% — ¢ F3(2) = 67732}10}11 :




Thus we find the differential equation for f(¢):

d
dt

= f=Cx|l

2o f

x 1
2@53]‘”3 ..|2

Neglecting the third term in the r.h.s.

flt) = v Cx(émQA% — k’)

]

sinh

.f 2
62/43—;;)

(£ — fo)_

a possibility of an inflation




The discussed solution is not unique

A SPECIAL — 2nao - 2nao
A — An : | ) F — Fn, ;
SOLUTION Z_% E z_% )
. de 2 1 g2 1
f= = (F§ + 2R Fy ' £2(0) + .2

In this approximation
f =e® = 2el0f(1 — 2F1F0_1€2F0t)_1

F1F0_1 strongly depends on Ag, A;if k=0

‘ —1
FlFO_l = (A — 2?}12> (?TLQA%>



F(a) = F3(a) = Cxe™ + ane_m,
Fn = 2 An/[3(n+2)] — kbno + Adpa,

AHEZAEAH—I! IT&LEI"L,/S
[=0



2F A" + F'A 4+ 2u%e**A =0

Ala) =3, Ape™®

2Cc (nt + 1) (n + 2) Ay o
n
= -- Z m (-:rn.. —+ ?:_r..)fn_m A, + Q,u.gflﬂ__g
m=1

The system of recurrence relations



_ - |
da 2% — .
— e T Z ol r = pAo/V6t.
dr | i1 - |

A(a) /Ao =1+ > ag, e
k=1

FlFe= 1+Zf2ﬁ.:€2kﬁ

k=1

a=uo— In Ap



Problems:
A detailed description of inflation requires
adding matter and solving our equations
beyond the asymptotic regions (in the
positive asymptotic region there are
problems definitely requiring matter).
It is easy to add some scalar matter but a
realistic theory with matter is a problem.
In principle the E-W model contains some
inflation mechanism (at least, is compatible
with inflation: non-isotropic?).



Vecton dark matter can be produced

in strong gravitational fields.
Quantum gravity is necessary!

Possibly, so produced dark matter can
influence inflation?

Anyway, inflation and dark matter
are crucial things to study and test
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