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G. Cognola, J. Haro, S.D. Odintsov, P.J. Silva, S.
Zerbini, ...

4th Sakharov Conference, Moscow, May 21, 2009 – p. 2/32



Einstein’s Cosmological Constant
Our universe seems to be spatially flat and to possess a non-vanishing

cosmological constant

For cosmologists and general relativists: a great mistake (Einstein)

Rµν − 1

2
gµνR = −(8πG/c4)Tµν+λgµν

For elementary particle physicists: a great embarrassment

no way to get rid off (Coleman, Weinberg, Polchinski)

The cc Λ is indeed a peculiar quantity

has to do with cosmology Einstein’s eqs., FRW universe

has to do with the local structure of elementary particle physics

stress-energy density µ of the vacuum

Lcc =

∫
d4x

√
−g µ4 =

1

8πG

∫
d4x

√
−g λ

In other words: two contributions on the same footing (Zel’dovich, 68)

Λ c2

8πG
+

1

Vol
~ c

2

∑

i

ωi
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2

∑

n

λn =
1

2
tr H =

1

2
ζµ
H(−1)

gives ∞ physical meaning?

Regularization + Renormalization ( cut-off, dim, ζ )

Even then: Has the final value real sense ?
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Existence ofζA for A a ΨDO
1. A a positive-definite elliptic ΨDO of positive order m ∈ R+

2. A acts on the space of smooth sections of

3. E, n-dim vector bundle over

4. M closed n-dim manifold
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(a) The zeta function is defined as:
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∑
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−s
j , Re s > n
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(b) ζA(s) has a meromorphic continuation to the whole complex plane C

(regular at s = 0), provided the principal symbol of A, am(x, ξ), admits a
spectral cut: Lθ = {λ ∈ C; Argλ = θ, θ1 < θ < θ2}, SpecA ∩ Lθ = ∅
(the Agmon-Nirenberg condition)

(c) The definition of ζA(s) depends on the position of the cut Lθ

(d) The only possible singularities of ζA(s) are poles at
sj = (n− j)/m, j = 0, 1, 2, . . . , n− 1, n+ 1, . . .
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H ΨDO operator {ϕi, λi} spectral decomposition

∏
i∈I λi ?! ln

∏
i∈I λi =

∑
i∈I lnλi

Riemann zeta func: ζ(s) =
∑∞

n=1 n
−s, Re s > 1 (& analytic cont)

Definition: zeta function of H ζH(s) =
∑

i∈I λ
−s
i = trH−s

As Mellin transform: ζH(s) = 1
Γ(s)

∫ ∞
0 dt ts−1 tr e−tH , Res > s0

Derivative: ζ ′H(0) = −∑
i∈I lnλi
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Determinant: Ray & Singer, ’67
detζ H = exp [−ζ ′H(0)]

Weierstrass def: subtract leading behavior of λi in i, as i→ ∞,

until series
∑

i∈I lnλi converges =⇒ non-local counterterms !!

C. Soulé et al, Lectures on Arakelov Geometry, CUP 1992; A. Voros,...
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Properties
The definition of the determinant detζ A only depends on the
homotopy class of the cut

A zeta function (and corresponding determinant) with the same
meromorphic structure in the complex s-plane and extending the
ordinary definition to operators of complex order m ∈ C\Z (they do not
admit spectral cuts), has been obtained [Kontsevich and Vishik]

Asymptotic expansion for the heat kernel:

tr e−tA =
∑′

λ∈Spec A e
−tλ

∼ αn(A) +
∑

n6=j≥0 αj(A)t−sj +
∑

k≥1 βk(A)tk ln t, t ↓ 0

αn(A) = ζA(0), αj(A) = Γ(sj) Ress=sj
ζA(s), sj /∈ −N

αj(A) = (−1)k

k! [PP ζA(−k) + ψ(k + 1) Ress=−k ζA(s)] ,

sj = −k, k ∈ N

βk(A) = (−1)k+1

k! Ress=−k ζA(s), k ∈ N\{0}

PP φ := lims→p

[
φ(s) − Ress=p φ(s)

s−p

]
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The Chowla-Selberg Expansion Formula: Basics
Jacobi’s identity for the θ−function

θ3(z, τ) := 1 + 2
∑∞

n=1 qn2
cos(2nz), q := eiπτ , τ ∈ C

θ3(z, τ) = 1√
−iτ

ez2/iπτ θ3

(
z
τ
|−1

τ

)
equivalently:

∞∑

n=−∞

e−(n+z)2t =

√
π

t

∞∑

n=0

e−
π2n2

t cos(2πnz), z, t ∈ C, Ret > 0
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Higher dimensions: Poisson summ formula (Riemann)
∑

~n∈Zp

f(~n) =
∑

~m∈Zp

f̃(~m)

f̃ Fourier transform
[Gelbart + Miller, BAMS ’03, Iwaniec, Morgan, ICM ’06]
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f(~n) =
∑

~m∈Zp

f̃(~m)

f̃ Fourier transform
[Gelbart + Miller, BAMS ’03, Iwaniec, Morgan, ICM ’06]

Truncated sums −→ asymptotic series
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Extended CS Formulas (ECS)
Consider the zeta function (Res > p/2, A > 0,Req > 0)

ζA,~c,q(s) =
∑

~n∈Zp

′
[
1

2
(~n+ ~c)

T
A (~n+ ~c) + q

]−s

=
∑

~n∈Zp

′
[Q (~n+ ~c) + q]

−s

prime: point ~n = ~0 to be excluded from the sum
(inescapable condition when c1 = · · · = cp = q = 0)

Q (~n+ ~c) + q = Q(~n) + L(~n) + q̄
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T
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]−s

=
∑

~n∈Zp

′
[Q (~n+ ~c) + q]

−s

prime: point ~n = ~0 to be excluded from the sum
(inescapable condition when c1 = · · · = cp = q = 0)

Q (~n+ ~c) + q = Q(~n) + L(~n) + q̄

Case q 6= 0 (Req > 0)

ζA,~c,q(s) =
(2π)p/2qp/2−s

√
det A

Γ(s − p/2)

Γ(s)
+

2s/2+p/4+2πsq−s/2+p/4

√
det A Γ(s)

×
∑

~m∈Z
p
1/2

′ cos(2π~m · ~c)
(
~mT A−1 ~m

)s/2−p/4
Kp/2−s

(
2π

√
2q ~mT A−1 ~m

)

[ECS1]
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(
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√
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[ECS1]
Pole: s = p/2 Residue:

Ress=p/2 ζA,~c,q(s) =
(2π)p/2

Γ(p/2)
(detA)−1/2
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Gives (analytic cont of) multidimensional zeta function in terms of an
exponentially convergent multiseries, valid in the whole complex plane
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Gives (analytic cont of) multidimensional zeta function in terms of an
exponentially convergent multiseries, valid in the whole complex plane

Exhibits singularities (simple poles) of the meromorphic continuation
—with the corresponding residua— explicitly

Only condition on matrix A: corresponds to (non negative) quadratic
form, Q. Vector ~c arbitrary, while q is (to start) a non-neg constant

Kν modified Bessel function of the second kind and the subindex 1/2
in Z

p
1/2 means that only half of the vectors ~m ∈ Z

p participate in the
sum. E.g., if we take an ~m ∈ Z

p we must then exclude −~m
[simple criterion: one may select those vectors in Z

p\{~0} whose
first non-zero component is positive]
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Gives (analytic cont of) multidimensional zeta function in terms of an
exponentially convergent multiseries, valid in the whole complex plane

Exhibits singularities (simple poles) of the meromorphic continuation
—with the corresponding residua— explicitly

Only condition on matrix A: corresponds to (non negative) quadratic
form, Q. Vector ~c arbitrary, while q is (to start) a non-neg constant

Kν modified Bessel function of the second kind and the subindex 1/2
in Z

p
1/2 means that only half of the vectors ~m ∈ Z

p participate in the
sum. E.g., if we take an ~m ∈ Z

p we must then exclude −~m
[simple criterion: one may select those vectors in Z

p\{~0} whose
first non-zero component is positive]

Case c1 = · · · = cp = q = 0 [true extens of CS, diag subcase]

ζAp(s) =
21+s

Γ(s)

p−1∑

j=0

(det Aj)
−1/2

[
πj/2a

j/2−s
p−j Γ

(
s − j

2

)
ζR(2s−j) +

4πsa
j
4
− s

2
p−j

∞∑

n=1

∑

~mj∈Zj

′nj/2−s
(
~mt

jA
−1
j ~mj

)s/2−j/4
Kj/2−s

(
2πn

√
ap−j ~mt

jA
−1
j ~mj

)]

[ECS3d]
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The Casimir Effect

vacuum

BC

F

Casimir Effect

BC e.g. periodic
=⇒ all kind of fields
=⇒ curvature or topology

Universal process:

Sonoluminiscence (Schwinger)

Cond. matter (wetting 3He alc.)

Optical cavities

Direct experim. confirmation

Van der Waals, Lifschitz theory
Dynamical CE ⇐
Lateral CE

Extract energy from vacuum

CE and the cosmological constant ⇐
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In modern language the Casimir energy can be expressed in terms of the
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The standard approach
=⇒ Casimir force: calculated
by computing change in zero
point energy of the em field

=⇒ But Casimir
effects can be calculated
as S-matrix elements:
Feynman diagrs with ext. lines

In modern language the Casimir energy can be expressed in terms of the
trace of the Greens function for the fluctuating field in the background of
interest (conducting plates)

E =
~

2π
Im

∫
dωω Tr

∫
d3x [G(x, x, ω + iǫ) − G0(x, x, ω + iǫ)]

G full Greens function for the fluctuating field
G0 free Greens function Trace is over spin
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1

π
Im

∫
[G(x, x, ω + iǫ) − G0(x, x, ω + iǫ)] =

d∆N

dω

change in the density of states due to the background

=⇒ A restatement of the Casimir sum over shifts in zero-point energies

~

2

∑
(ω − ω0)

=⇒ Lippman-Schwinger eq. allows full Greens f, G, be expanded as a
series in free Green’s f, G0, and the coupling to the external field

=⇒ “Experimental confirmation of the Casimir effect does not establish the
reality of zero point fluctuations” [R. Jaffe et. al.]
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The Dynamical Casimir Effect
S.A. Fulling & P.C.W. Davies, Proc Roy Soc A348 (1976)

Moving mirrors modify structure of quantum vacuum

Creation and annihilation of photons; once mirrors return to rest,
some produced photons may still remain: flux of radiated particles

For a single, perfectly reflecting mirror:
# photons & energy diverge while mirror moves

Several renormalization prescriptions have been used
in order to obtain a well-defined energy

Problem: for some trajectories this finite energy is not a positive
quantity and cannot be identified with the energy of the photons

Moore; Razavy, Terning; Johnston, Sarkar; Dodonov et al;
Plunien et al; Barton, Eberlein, Calogeracos; Ford, Vilenkin;
Jaeckel, Reynaud, Lambrecht; Brevik, Milton et al;
Dalvit, Maia-Neto et al; Law; Parentani, ...
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A CONSISTENT APPROACH:
J. Haro & E.E., PRL 97 (2006); arXiv:0705.0597

Partially transmitting mirrors, which become transparent to
very high frequencies (analytic matrix)

Proper use of a Hamiltonian method & corresponding renormalization

Proved both: # of created particles is finite & their energy is always
positive, for the whole trajectory during the mirrors’ displacement

The radiation-reaction force acting on the mirrors owing to emission-
absorption of particles is related with the field’s energy through the
energy conservation law: energy of the field at any t equals (with
opposite sign) the work performed by the reaction force up to time t

Such force is split into two parts: a dissipative force
whose work equals minus the energy of the particles that remain
& a reactive force vanishing when the mirrors return to rest

The dissipative part we obtain agrees with the other methods.
But those have problems with the reactive part, which in general
yields a non-positive energy =⇒ EXPERIMENT
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SOME DETAILS OF THE METHOD

Hamiltonian method for neutral Klein-Gordon field in a cavity Ωt, with
boundaries moving at a certain speed v << c, ǫ = v/c

(of order 10−8 in Kim, Brownell, Onofrio, PRL 96 (2006) 200402)
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Hamiltonian method for neutral Klein-Gordon field in a cavity Ωt, with
boundaries moving at a certain speed v << c, ǫ = v/c

(of order 10−8 in Kim, Brownell, Onofrio, PRL 96 (2006) 200402)

Assume boundary at rest for time t ≤ 0 and returns to its initial
position at time T

Hamiltonian density conveniently obtained using the method in
Johnston, Sarkar, JPA 29 (1996) 1741

Lagrangian density of the field

L(t,x) =
1

2

[
(∂tφ)2 − |∇xφ|2

]
, ∀x ∈ Ωt ⊂ R

n, ∀t ∈ R
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SOME DETAILS OF THE METHOD

Hamiltonian method for neutral Klein-Gordon field in a cavity Ωt, with
boundaries moving at a certain speed v << c, ǫ = v/c

(of order 10−8 in Kim, Brownell, Onofrio, PRL 96 (2006) 200402)

Assume boundary at rest for time t ≤ 0 and returns to its initial
position at time T

Hamiltonian density conveniently obtained using the method in
Johnston, Sarkar, JPA 29 (1996) 1741

Lagrangian density of the field

L(t,x) =
1

2

[
(∂tφ)2 − |∇xφ|2

]
, ∀x ∈ Ωt ⊂ R

n, ∀t ∈ R

Hamiltonian. Transform moving boundary into fixed one by
(non-conformal) change of coordinates

R : (t̄,y) → (t(t̄,y),x(t̄,y)) = (t̄,R(t̄,y))

transform Ωt into a fixed domain Ω̃

Ω̃: (t(t̄,y),x(t̄,y)) = R(t̄,y) = (t̄,R(t̄,y))

(with t̄ the new time)
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Seminal Davis-Fulling model [PRSL A348 (1976) 393]
renormalized energy negative while the mirror moves:
cannot be considered as the energy of the produced particles at time t
[cf. paragraph after Eq. (4.5)]
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frequencies (math. implementation of a physical plate).
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cannot be considered as the energy of the produced particles at time t
[cf. paragraph after Eq. (4.5)]
Our interpretation: a perfectly reflecting mirror is non-physical.
Consider, instead, a partially transmitting mirror, transparent to high
frequencies (math. implementation of a physical plate).
Trajectory (t, ǫg(t)). When mirror at rest, scattering described by matrix

S(ω) =


 s(ω) r(ω) e−2iωL

r(ω) e2iωL s(ω)




=⇒ S matrix is taken to be: (x = L position of the mirror)
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CASE OF A SINGLE, PARTIALLY TRANSMITTING MIRROR

Seminal Davis-Fulling model [PRSL A348 (1976) 393]
renormalized energy negative while the mirror moves:
cannot be considered as the energy of the produced particles at time t
[cf. paragraph after Eq. (4.5)]
Our interpretation: a perfectly reflecting mirror is non-physical.
Consider, instead, a partially transmitting mirror, transparent to high
frequencies (math. implementation of a physical plate).
Trajectory (t, ǫg(t)). When mirror at rest, scattering described by matrix

S(ω) =


 s(ω) r(ω) e−2iωL

r(ω) e2iωL s(ω)




=⇒ S matrix is taken to be: (x = L position of the mirror)

→ Real in the temporal domain: S(−ω) = S∗(ω)

→ Causal: S(ω) is analytic for Im (ω) > 0

→ Unitary: S(ω)S†(ω) = Id
→ The identity at high frequencies: S(ω) → Id, when |ω| → ∞

s(ω) and r(ω) meromorphic (cut-off) functions
(material’s permitivity and resistivity)
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RESULTS ARE REWARDING:

In our Hamiltonian approach

〈F̂Ha(t)〉 = − ǫ

2π2

∫ ∞

0

∫ ∞

0

dωdω′ωω′

ω + ω′
Re

[
e−i(ω+ω′)t ̂̇gθt(ω + ω′)

]

×[|r(ω) + r∗(ω′)|2 + |s(ω) − s∗(ω′)|2] + O(ǫ2)

Note this integral diverges for a perfect mirror (r ≡ −1, s ≡ 0,
ideal case), but nicely converges for our partially transmitting
(physical) one where r(ω) → 0, s(ω) → 1, as ω → ∞
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]

×[|r(ω) + r∗(ω′)|2 + |s(ω) − s∗(ω′)|2] + O(ǫ2)

Note this integral diverges for a perfect mirror (r ≡ −1, s ≡ 0,
ideal case), but nicely converges for our partially transmitting
(physical) one where r(ω) → 0, s(ω) → 1, as ω → ∞

Energy conservation is fulfilled: the dynamical energy at any
time t equals, with the opposite sign, the work performed by
the reaction force up to that time t

〈Ê(t)〉 = −ǫ

∫ t

0

〈F̂Ha(τ)〉ġ(τ)dτ
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In our Hamiltonian approach

〈F̂Ha(t)〉 = − ǫ

2π2

∫ ∞

0

∫ ∞

0

dωdω′ωω′

ω + ω′
Re

[
e−i(ω+ω′)t ̂̇gθt(ω + ω′)

]

×[|r(ω) + r∗(ω′)|2 + |s(ω) − s∗(ω′)|2] + O(ǫ2)

Note this integral diverges for a perfect mirror (r ≡ −1, s ≡ 0,
ideal case), but nicely converges for our partially transmitting
(physical) one where r(ω) → 0, s(ω) → 1, as ω → ∞

Energy conservation is fulfilled: the dynamical energy at any
time t equals, with the opposite sign, the work performed by
the reaction force up to that time t

〈Ê(t)〉 = −ǫ

∫ t

0

〈F̂Ha(τ)〉ġ(τ)dτ

=⇒ Two mirrors; higher dimensions; fields of any kind
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Quantum Vacuum Fluct’s & the CC
The main issue: S.A. Fulling et. al., hep-th/070209v2

energy ALWAYS gravitates, therefore the energy density of the
vacuum, more precisely, the vacuum expectation value of the
stress-energy tensor 〈Tµν〉 ≡ −Egµν
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Recent observations: M. Tegmark et al. [SDSS Collab.] PRD 2004
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Quantum Vacuum Fluct’s & the CC
The main issue: S.A. Fulling et. al., hep-th/070209v2

energy ALWAYS gravitates, therefore the energy density of the
vacuum, more precisely, the vacuum expectation value of the
stress-energy tensor 〈Tµν〉 ≡ −Egµν

Appears on the rhs of Einstein’s equations:

Rµν − 1

2
gµνR = −8πG(T̃µν − Egµν)

It affects cosmology: T̃µν excitations above the vacuum

Equivalent to a cosmological constant Λ = 8πGE

Recent observations: M. Tegmark et al. [SDSS Collab.] PRD 2004

Λ = (2.14 ± 0.13 × 10−3 eV)4 ∼ 4.32 × 10−9 erg/cm3

Idea: zero point fluctuations can contribute to the
cosmological constant Ya.B. Zeldovich ’68
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CC PROBLEM

Relativistic field: collection of harmonic oscill’s (scalar field)

E0 =
~ c

2

∑

n

ωn, ω = k2 +m2/~2, k = 2π/λ
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Evaluating in a box and putting a cut-off at maximum kmax corresp’ng
to QFT physics (e.g., Planck energy)

ρ ∼ ~ k4
Planck

16π2
∼ 10123ρobs

kind of a modern (and thick!) aether R. Caldwell, S. Carroll, ...

4th Sakharov Conference, Moscow, May 21, 2009 – p. 20/32



CC PROBLEM

Relativistic field: collection of harmonic oscill’s (scalar field)

E0 =
~ c

2

∑

n

ωn, ω = k2 +m2/~2, k = 2π/λ

Evaluating in a box and putting a cut-off at maximum kmax corresp’ng
to QFT physics (e.g., Planck energy)

ρ ∼ ~ k4
Planck

16π2
∼ 10123ρobs

kind of a modern (and thick!) aether R. Caldwell, S. Carroll, ...

Observational tests see nothing (or very little) of it:
=⇒ (new) cosmological constant problem

4th Sakharov Conference, Moscow, May 21, 2009 – p. 20/32



CC PROBLEM

Relativistic field: collection of harmonic oscill’s (scalar field)

E0 =
~ c

2

∑

n

ωn, ω = k2 +m2/~2, k = 2π/λ

Evaluating in a box and putting a cut-off at maximum kmax corresp’ng
to QFT physics (e.g., Planck energy)

ρ ∼ ~ k4
Planck

16π2
∼ 10123ρobs

kind of a modern (and thick!) aether R. Caldwell, S. Carroll, ...

Observational tests see nothing (or very little) of it:
=⇒ (new) cosmological constant problem

Very difficult to solve and we do not address this question directly
[Baum, Hawking, Coleman, Polchinsky, Weinberg,...]

4th Sakharov Conference, Moscow, May 21, 2009 – p. 20/32



CC PROBLEM

Relativistic field: collection of harmonic oscill’s (scalar field)

E0 =
~ c

2

∑

n

ωn, ω = k2 +m2/~2, k = 2π/λ

Evaluating in a box and putting a cut-off at maximum kmax corresp’ng
to QFT physics (e.g., Planck energy)

ρ ∼ ~ k4
Planck

16π2
∼ 10123ρobs

kind of a modern (and thick!) aether R. Caldwell, S. Carroll, ...

Observational tests see nothing (or very little) of it:
=⇒ (new) cosmological constant problem

Very difficult to solve and we do not address this question directly
[Baum, Hawking, Coleman, Polchinsky, Weinberg,...]

What we do consider —with relative success in some different
approaches— is the additional contribution to the cc coming from the
non-trivial topology of space or from specific boundary conditions
imposed on braneworld models:

=⇒ kind of cosmological Casimir effect
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Cosmolog Imprint of the Casimir Eff’t?
Assuming one will be able to prove (in the future) that the ground
value of the cc is zero (as many had suspected until recently), we will
be left with this incremental value coming from the topology or BCs

* L. Parker & A. Raval, VCDM, vacuum energy density
* C.P. Burgess et al., hep-th/0606020 & 0510123: Susy Large Extra
Dims (SLED), two 10−2mm dims, bulk vs brane Susy breaking scales
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Dims (SLED), two 10−2mm dims, bulk vs brane Susy breaking scales
* T. Padmanabhan, gr-qc/0606061: Holographic Perspective, CC is an
intg const, no response of gravity to changes in bulk vac energy dens

We show (with different examples) that this value acquires
the correct order of magnitude —corresponding to the one
coming from the observed acceleration in the expansion of
our universe— in some reasonable models involving:

(a) small and large compactified scales

(b) dS & AdS worldbranes

(c) supergraviton theories (discret dims, deconstr)
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The Braneworld Case
1. Braneworld may help to solve:

the hierarchy problem

the cosmological constant problem

2. Presumably, the bulk Casimir effect will play a role in the construction (radion

stabilization) of braneworlds

Bulk Casimir effect (effective potential) for a conformal or massive scalar field

Bulk is a 5-dim AdS or dS space with 2/1 4-dim dS brane (our universe)

Consistent with observational data even for relatively large extra dimension

Previous work: −→ flat space brane
−→ bulk conformal scalar field

−→ conclusion: no CE

We used zeta regularization at full power, with positive results!

EE, S Nojiri, SD Odintsov, S Ogushi, Phys Rev D67 (2003) 063515 Casimir effect in

de Sitter and Anti-de Sitter braneworlds EE, SD Odintsov, AA Saharian 0902.0717

Repulsive Casimir effect from extra dimensions and Robin BC: from branes to pistons
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Casimir eff in brworl’s w large extra dim
Casimir energy for massive scalar field with an arbitrary curvature coupling,

obeying Robin BCs on two codim-1 parallel plates embedded in background
spacetime R(D1−1,1) × Σ, Σ compact internal space
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It is shown that Robin BCs with different coefficients are necessary
to obtain repulsive Casimir forces

Robin type BCs are an extension of Dirichlet and Neumann’s

−→ most suitable to describe physically realistic situations

Genuinely appear in: vacuum effects for a confined charged scalar field in

external fields [Ambjørn ea 83], spinor and gauge field theories, quantum
gravity and supergravity [Luckock ea 91] Can be made conformally invariant,

while purely-Neumann conditions cannot

−→ needed for conformally invariant theories with boundaries, to preserve
this invariance
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Casimir energy for massive scalar field with an arbitrary curvature coupling,

obeying Robin BCs on two codim-1 parallel plates embedded in background
spacetime R(D1−1,1) × Σ, Σ compact internal space

Most general case: constants in the BCs different for the two plates

It is shown that Robin BCs with different coefficients are necessary
to obtain repulsive Casimir forces

Robin type BCs are an extension of Dirichlet and Neumann’s

−→ most suitable to describe physically realistic situations

Genuinely appear in: vacuum effects for a confined charged scalar field in

external fields [Ambjørn ea 83], spinor and gauge field theories, quantum
gravity and supergravity [Luckock ea 91] Can be made conformally invariant,

while purely-Neumann conditions cannot

−→ needed for conformally invariant theories with boundaries, to preserve
this invariance

Quantum scalar field with Robin BCs on boundary of cavity violates

Bekenstein’s entropy-to-energy bound near certain points in the space of the
parameter defining the boundary condition [Solodukhin 01]
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Robin BCs can model the finite penetration of the field through the boundary:

the ‘skin-depth’ param related to Robin coefficient [Mostep ea 85,Lebedev 01]
Casimir forces between the boundary planes of films [Schmidt ea 08]
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Robin BCs can model the finite penetration of the field through the boundary:

the ‘skin-depth’ param related to Robin coefficient [Mostep ea 85,Lebedev 01]
Casimir forces between the boundary planes of films [Schmidt ea 08]

Naturally arise for scalar and fermion bulk fields in the Randall-Sundrum model

For arbitrary internal space, interaction part of the Casimir energy given by

∆E[a1,a2] =
(4π)−D1/2

Γ(D1/2)

∑

β

∫ ∞

mβ

dxx(x2 −m2
β) D1/2−1

× ln

[
1 − (β1x+ 1)(β2x+ 1)

(β1x− 1)(β2x− 1)
e−2ax

]
(∗)
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the ‘skin-depth’ param related to Robin coefficient [Mostep ea 85,Lebedev 01]
Casimir forces between the boundary planes of films [Schmidt ea 08]

Naturally arise for scalar and fermion bulk fields in the Randall-Sundrum model

For arbitrary internal space, interaction part of the Casimir energy given by

∆E[a1,a2] =
(4π)−D1/2

Γ(D1/2)

∑

β

∫ ∞

mβ

dxx(x2 −m2
β) D1/2−1

× ln

[
1 − (β1x+ 1)(β2x+ 1)

(β1x− 1)(β2x− 1)
e−2ax

]
(∗)

For Dirichlet and Neumann BCs on both plates this leads to

∆E
(J,J)
[a1,a2]

= − 2a−D1

(8π)(D1+1)/2

∑

β

∞∑

n=1

f(D1+1)/2(2namβ)

nD1+1

with fν(z) = zνKν(z) −→ energy always negative

4th Sakharov Conference, Moscow, May 21, 2009 – p. 24/32



For Dirichlet BC on one plate and Neumann on the other, the interaction

component of the vacuum energy is

∆E
(D,N)
[a1,a2] =

(4π)−D1/2a

Γ(D1/2 + 1)

∑

β

∫
∞

mβ

dx
(x2 − m2

β) D1/2

e2ax + 1

= − 2a−D1

(8π)(D1+1)/2

∑

β

∞∑

n=1

f(D1+1)/2(2namβ)

(−1)nnD1+1

positive for all values of the inter-plate distance
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For Dirichlet BC on one plate and Neumann on the other, the interaction

component of the vacuum energy is

∆E
(D,N)
[a1,a2] =

(4π)−D1/2a

Γ(D1/2 + 1)

∑

β

∫
∞

mβ

dx
(x2 − m2

β) D1/2

e2ax + 1

= − 2a−D1

(8π)(D1+1)/2

∑

β

∞∑

n=1

f(D1+1)/2(2namβ)

(−1)nnD1+1

positive for all values of the inter-plate distance

In the case of a conformally coupled massless field on the background of a

spacetime conformally related to the one described by the line element

ds2 = gMNdxMdxN = ηµνdxµdxν − γildXidXl

ηµν = diag(1,−1, . . . ,−1) metric of (D1 + 1)-dim Minkowski st and Xi

coordinates of Σ, with the conformal factor Ω2(xD1). Interaction part of Casimir

energy is given (*), with coeffs βj related to coeffs of the Robin BCs

(1 + βjn
M∇M )ϕ(x) = [1 + (−1)j−1Ω−1

j βj∂D1
]ϕ(x) = 0, Ωj = Ω(xD1

j )

& conformal factor βj =
[
Ωj + (−1)j D−1

2Ωj
βjΩ

′

j

]
−1

βj , Ω′

j = Ω′

j(x
D1

j )
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In Randall-Sundrum 2-brane model with compact internal space, the Robin

coefficients are β
−1

j = (−1)jcj/2 − 2Dζ/rD, c1, c2 mass parameters in the
surface action of the scalar field for the left and right branes, respectively

The vacuum energy can have a minimum, for the stable equilibrium point
Can be used in braneworld models for the stabilization of the radion field
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We have considered a piston-like geometry, introducing a third plate (then this
plate is sent to infinity) Casimir force

P = − 2(4π)−D1/2

VΣΓ(D1/2)aD1+1

∑

β

∫
∞

amβ

dx
x2(x2 − a2m2

β) D1/2−1

(b1x−1)(b2x−1)
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j = (−1)jcj/2 − 2Dζ/rD, c1, c2 mass parameters in the
surface action of the scalar field for the left and right branes, respectively

The vacuum energy can have a minimum, for the stable equilibrium point
Can be used in braneworld models for the stabilization of the radion field

We have considered a piston-like geometry, introducing a third plate (then this
plate is sent to infinity) Casimir force

P = − 2(4π)−D1/2

VΣΓ(D1/2)aD1+1

∑

β

∫
∞

amβ

dx
x2(x2 − a2m2

β) D1/2−1

(b1x−1)(b2x−1)
(b1x+1)(b2x+1)

e2x − 1

With independence of the geometry of the internal space, the force is attractive for
Dirichlet or Neumann boundary conditions on both plates

P (J,J) = −2(4π)−D1/2

VΣΓ(D1/2)

∑

β

∫
∞

mβ

dxx2 (x2 − m2
β) D1/2−1

e2ax − 1

=
2a−D1−1

(8π)(D1+1)/2VΣ

∑

β

∞∑

n=1

1

nD1+1

[
f(D1+1)/2(2namβ) − f(D1+3)/2(2namβ)

]

J = D,N, and repulsive for Dirichlet BC on one plate and Neumann on the other,
a monotonic function of the distance
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For general Robin BCs the Casimir force can be either attractive (negative P ) or

repulsive (positive P ), depending on the Robin coefficients and distance between
plates
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For small values of the size of internal space, in models with zero modes along the
internal space, main contribution to Casimir force comes from the zero modes:

contributions of non-zero modes are exponentially suppressed

In this limit, to leading order we recover the standard result for the Casimir force

between two plates in (D1 + 1) Minkowski spacetime

In absence of zero modes (case of twisted boundary conditions along

compactified dimensions), Casimir forces are exponentially suppressed in the limit
of small size of the internal space. For small values of the inter-plate distance the

Casimir forces are attractive, independently of the values of the Robin coefficients,
except for the case of Dirichlet boundary conditions on one plate and non-Dirichlet

boundary conditions on the other
In this latter case, the Casimir force is repulsive at small distances
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For general Robin BCs the Casimir force can be either attractive (negative P ) or

repulsive (positive P ), depending on the Robin coefficients and distance between
plates

For small values of the size of internal space, in models with zero modes along the
internal space, main contribution to Casimir force comes from the zero modes:

contributions of non-zero modes are exponentially suppressed

In this limit, to leading order we recover the standard result for the Casimir force

between two plates in (D1 + 1) Minkowski spacetime

In absence of zero modes (case of twisted boundary conditions along

compactified dimensions), Casimir forces are exponentially suppressed in the limit
of small size of the internal space. For small values of the inter-plate distance the

Casimir forces are attractive, independently of the values of the Robin coefficients,
except for the case of Dirichlet boundary conditions on one plate and non-Dirichlet

boundary conditions on the other
In this latter case, the Casimir force is repulsive at small distances

Interesting remark: this property could be used in the proposal of a Casimir
experiment with the purpose to carry out an explicit detailed observation of

‘large’ extra dimensions as allowed by some models of particle physics

4th Sakharov Conference, Moscow, May 21, 2009 – p. 27/32



Gravity Eqs as Eqs of State: f(R) Case
The cosmological constant as an “integration constant”

T. Padmanabhan; D. Blas, J. Garriga, E. Alvarez ...

Unimodular Gravity
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Gravity Eqs as Eqs of State: f(R) Case
The cosmological constant as an “integration constant”

T. Padmanabhan; D. Blas, J. Garriga, E. Alvarez ...

Unimodular Gravity

Ted Jacobson [PRL1995] obtained Einstein’s equations from

local thermodynamics arguments only

By way of generalizing black hole thermodynamics to

space-time thermodynamics as seen by a local observer

This strongly suggests, in a fundamental context:

Einstein’s Eqs are to be viewed as EoS

Should, probably, not be taken as basic for quantizing gravity

C. Eling, R. Guedens, T. Jacobson [PRL2006]: extension to

polynomial f(R) gravity but as non-equilibrium thermodyn.

Also Erik Verlinde (private discussions)
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Jacobson’s argument: basic thermodynamic relation

δQ = TδS

– entropy proport to variation of the horizon area: δS = η δA
– local temperature T defined as Unruh temp: T = ~k/2π

– functional dependence of S wrt energy and size of system
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Jacobson’s argument: basic thermodynamic relation

δQ = TδS

– entropy proport to variation of the horizon area: δS = η δA
– local temperature T defined as Unruh temp: T = ~k/2π

– functional dependence of S wrt energy and size of system

Key point in our generalization: the definition of the local

entropy (Iyer+Wald 93: local boost inv, Noether charge)

S = −2π

∫

Σ
Epqrs

R ǫpqǫrs, δS = δ (ηeA)

ηe is a function of the metric and its deriv’s to a given order

ηe = ηe

(
gab, Rcdef ,∇(l)Rpqrs

)
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Jacobson’s argument: basic thermodynamic relation

δQ = TδS

– entropy proport to variation of the horizon area: δS = η δA
– local temperature T defined as Unruh temp: T = ~k/2π

– functional dependence of S wrt energy and size of system

Key point in our generalization: the definition of the local

entropy (Iyer+Wald 93: local boost inv, Noether charge)

S = −2π

∫

Σ
Epqrs

R ǫpqǫrs, δS = δ (ηeA)

ηe is a function of the metric and its deriv’s to a given order

ηe = ηe

(
gab, Rcdef ,∇(l)Rpqrs

)

Case of f(R) gravities: L = f(R,∇nR)
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Also the concept of an effective Newton constant for graviton

exchange (effective propagator)

1

8πGeff
= Epqrs

R ǫpqǫrs =
∂f

∂R
(gprgqs − gqrgps)ǫpqǫrs

=
∂f

∂R
=
ηe

2π
, S =

A

4Geff
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(gprgqs − gqrgps)ǫpqǫrs

=
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∂R
=
ηe

2π
, S =

A

4Geff

For these theories, the different polarizations of the gravitons

only enter in the definition of the effective Newton constant

through the metric itself
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Also the concept of an effective Newton constant for graviton

exchange (effective propagator)

1

8πGeff
= Epqrs

R ǫpqǫrs =
∂f

∂R
(gprgqs − gqrgps)ǫpqǫrs

=
∂f

∂R
=
ηe

2π
, S =

A

4Geff

For these theories, the different polarizations of the gravitons

only enter in the definition of the effective Newton constant

through the metric itself

Final result, for f(R) gravities:

the local field equations can be thought of as an equation of

state of equilibrium thermodynamics (as in the GR case)
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Jacobson’s argum non-trivially extended to f(R) gravity field eqs
as EoS of local space-time thermodynamics
EE, P. Silva, Phys Rev D78, 061501(R) (2008), arXiv:0804.3721v2
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Jacobson’s argum non-trivially extended to f(R) gravity field eqs
as EoS of local space-time thermodynamics
EE, P. Silva, Phys Rev D78, 061501(R) (2008), arXiv:0804.3721v2

By means of a more general definition of local entropy, using Wald’s
definition of dynamic BH entropy
RM Wald PRD1993; V Iyer, RM Wald PRD1994

And also the concept of an effective Newton constant for graviton
exchange (effective propagator)
R. Brustein, D. Gorbonos, M. Hadad, arXiv:0712.3206

S-F Wu, G-H Yang, P-M Zhang, arXiv:0805.4044, direct extension
of our results to Brans-Dicke and scalar-tensor gravities
T Zhu, Ji-R Ren and S-F Mo, arXiv:0805.1162 [gr-qc];
C Eling, arXiv:0806.3165 [hep-th]; R-G Cai, L-M Cao and Y-P Hu,
arXiv:0807.1232 [hep-th] & arXiv:0809.1554 [hep-th]
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