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Symplectic wBA — 7(71)8AEBUJAB EBA — 7(71)(5A+1)(EB+1)EAB
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g8 — \g”B, where \ is a z—independent parameter,

@ and each term in v contains precisely two z—derivatives?

Complete Solution

v =av,+f z/pg—kfy(lnpﬁ,lnﬁ)

g Pg
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For comparison: Conformally Covariant Laplacian
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Definition of A, Proporties of A,

e A, takes semidensities
A S L@ L0) to semidensities.
4 8 16 e A, is manifestly
independent of p.
e NB! A, is not

nilpotent.
— 1
Ay = \/EA\/p

is independent of p!
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Naive Quantum Hamiltonian
~ 1 (—-1)53
H, = ———bx P(ﬁ) gAB(Q) Ps =
T 2y/(2) p(2)
Full Quantum Hamiltonian
A A h2
H = Hp - ?Vp(z) ~ T(Hcl)

N

21/25



The Even Scalar v,

Riemannian Geometry Particle in Curved Space

Particle in Curved Space

Classical Hamiltonian Action Schrﬁdinger
Representation
—

A
{Z 7pB}PB =

v
Naive Quantum Hamiltonian

A, = — pa p(2) 8°°(2) Ps
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Full Quantum Hamiltonian
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(starting with DeWitt 1957)

The operator formalism with the full Hamiltonian operator H
corresponds to a Hamiltonian path integral formulation where the
path integral action is the pure classical action S with no
quantum corrections.

. Z(tf'):Zf )
I /
(zf| exp [—hHAt] |zj) ~ / [dz][dp] exp [hSCl[z,p]]
Z(t,’):Z,'
Full Quantum Hamiltonian Classical Action
N N K2 .
A= R,-%v(2 Salz, Pl = / dt <pAzA—Hd>
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A=A tv, — Apg—z 2A = 2A 21, = 2Ap—z

) @ Characterized by nilpotency
o Characterized by a p

independence argument.

Particle in Curved Space

A is the full quantum
Hamiltonian

@ and characterized by a p
independence argument.

A ~ R
H = Hp—?up(z)

in the Schrodinger
representation. 24/25
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Conclusions

Even A Operator in Odd A Operator in
Riemannian Geometry Antisymplectic Geometry
R R
A ES Ap+Vp — Apg*Z 2A = 2Ap+2l/p = 2Apfz

@ Characterized by nilpotency

@ and characterized by a p
independence argument.

o Characterized by a p
independence argument.

Particle in Curved Space Curvature term in
Quantum Master Equation

A is the full quantum Hamiltonian

R
(W, W) = 2inA,W—n*—
4

in the Schrodinger representation.

Important 2-loop effect.
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