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MOTIVATION

Modification of gravity - a way to get acceleration of the
Universe.

Basic Idea: give a mass to a graviton with  m ~ Hy

Pathologies of Pauli-Fierz non-linear Massive Gravity:
4 Hamiltonian unbounded from below (ghosts)

4 Singular solutions (?)

However:

4 Other models with massive gravitons assume the Vainshtein
mechanism to work (E.g. Nair, Randjbar-Daemi, V. Rubakov'08).

4 PF MG can be seen as a relatively simple toy model (basic
ingredient for models with extra-dimensions like DGP)
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Pauli-Fierz Massive Gravity
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Static spherically symmetric solutions
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Static spherically symmetric solutions
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‘ = Is it possible
L to find a solution
,' regular everywhere?
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Stuckelberg mechanism and decoupling limit

Arkani-Hamed, Georgi, Schwartz’03

4 Massive spin-2 graviton: in the action

_ M /d% (\/TgR[g] — mTQV [g‘lf]> + Smlgl;

S
2



Stuckelberg mechanism and decoupling limit

Arkani-Hamed, Georgi, Schwartz’03

4 Massive spin-2 graviton: in the action

_ My

S
2

S D /d4:z:{M]23i\L

h+ ...+ Mim2A

[ @ (vEaRial - v ig 41 + Sl

introduction of

Stuckelberg boson ‘ demixing of kinetic terms

A+ ...+ Mim*o




Stuckelberg mechanism and decoupling limit

Arkani-Hamed, Georgi, Schwartz’03

4 Massive spin-2 graviton: in the action
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4 Dominant higher order term: (8/\5) with A — (m4Mp)1/5
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Stuckelberg mechanism and decoupling limit

Arkani-Hamed, Georgi, Schwartz’03

4 Massive spin-2 graviton: in the action
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4 Dominant higher order fterm:

Decoupling Limit
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with A = (m4Mp)1/5

Can do the same in
equations of motion
applied to the spherically
symmetric configurations



Action for ¢ In the Decoupling limit

4 The action for the scalar sector:
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4 New rescaled variables: ¢ = ., w=—A"Ri x 2
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Solutions in the Decoupling Limit

BD potential AGS potential
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solutions with source

4 Let us include a smoothed source
and ask for regularity at r=0

BD potential AGS potential
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Full system: Metrics and Equations of Motion

-

\_

Gupdztdz”

fuvdxtdx”

— e’ g2 L ARIGRZ 4 R240)2

: 2
—dt* + (1 — RNQ(R)> e M GR? 4 e~ R240)? flat

N
Schwarzschild-like

J
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Different asymptotic solutions
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Vainshtein

scaling
(small R)

assume R > Rg

v = —% + n1(mR)’ % + O (m*)
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solutions very far from source:
infinitely many solutions!

Decoupling Limit Full system
) 4
e~ R7% 4 po~em R
op ~ Ce 70 op ~ Ce e R
J \_

Important for numerics!!!




Validity of DL solutions

All other terms <-> cubic interaction (kept in DL)

4 for R>(Vainshtein radius) DL is valid up to 1/m

4 for R<(Vainshtein radius),

Q-scaling

h~ Rs/R

00¢ ~ 1~ m*Ry, /R
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~

Re < RLm™

N.B. Inside the star the solution changes,

DL is still valid.
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Decoupling Limit <-> full system




Decoupling Limit <-> full system
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Numerics |

RELAXATION vs SHOOTING

S

Damour, Kogan,
Papazoglou’03

Relaxation Shooting

More reliable for checking singular solutions
Requires adjusting initial conditions to
get required boundaries
Extremely difficult for highly non-linear systems
and for several equations

Impose all the boundary conditions
Might miss a singularity
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from MG to k-Mouflage Gravity

4 general class of actions

S = M3 / d*x/—g (R+m*¢R + m*F(d)) + Sy,
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Conclusion ()

4 1t is possible to obtain the DL in the case of static spherically
symmetric ansatz. This decoupling limit corresponds to DL in the
Goldstone picture.

4 The scaling conjectured by Vainshtein at small radius is only a
limiting case in an infinite family of non singular solutions each
showing a Vainshtein recovery of GR solutions below the Vainshtein
radius but a different common scaling at small distances.

4 For AGS potential a family of solutions exists containing the new
scaling solution with an Vainshtein-like solution as an asymptofic.
The requirement of no-conical singularity at zero chooses uniquely
the Vainshtein-like solution.

4 For the full system (not DL) regular (everywhere) solution exist for
AGS potential featuring a Vainshtein-like recovery of solutions of
General Relativity and flat asymptotic at infinity.

4 ? Compact objects: neutron stars and black holes ?



Conclusion (ll)

4 A large class of scalar-tensor theories where gravity becomes
stronger at large distances via the exchange of a scalar that mixes
with the graviton.

4 At small distances, i.e. large curvature, the scalar is screened
(“camouflages”) via an analog of the Vainshtein mechanism of
massive gravity.



